6 package for 7^{\text{th}} \qquad5.61-5.20=0.41 87\% 2\% 89\% 2\% 150 90\% 90\% 90\% 90\% 90\% \red{89\pm2} \qquad89-2=87 \qquad89+2=91 \red{\text{lectures}} \red{\text{between }87\%\text{ and }91\%} \blue{87\pm2} \qquad87-2=85 \qquad87+2=89 \blue{\text{case studies}} \blue{\text{between }85\%\text{ and }89\%} 87\% 89\% (\text s) (\text{cm}) 5 50.5 10 42.0 40 12.0 5 h(t) = 60 - bt + ct^2 (\text{cm}) t (\text s) 30 \, \text s 18 42 60 138 2 b c {-2} b c = \dfrac{1}{50} b c \qquad h(t) \approx 60 - 2t + 0.02t^2 t=30 30 18 \qquad -5(x+3)>2x+7+5x x < - \dfrac {11}{6} x > - \dfrac 5 4 x < \dfrac 1 3 x>4 -5 \blue{7x} \purple{15} \pink{-12} \qquad x<-\dfrac{11}{6} \sqrt3 \approx 1.732 \sin(65^\circ) \approx 0.91 \cos(65^\circ) \approx 0.42 \tan(65^\circ) \approx 2.14 \angle ADB \angle CDB \overline{AC} AD+DC=AC \overline{AD} \overline{DC} BCD BC DC BD DC BD ADB 30^\circ - 60^\circ - 90^\circ AD BD \sqrt3 AC AC \overline{AC} 40 2007 3.8 3.8 2008 5.4 5.7 2009 7.6 8.4 2010 10.7 12.4 2011 15.1 18.3 2012 21.2 27 2013 29.9 40 2014 42.2 59.2 2015 59.4 87.5 2016 83.8 129.5 2017 118.1 191.7 2018 166.5 283.6 2019 234.7 419.7 2020 330.9 621.2 41\% 48\% 2007 (41\%) (48\%) 2022 55 340 490 660 2020 330 41\% 41\% 41\% 2020 2021 1.41 2022 2022 660 \qquad\left(\dfrac23+\dfrac12i\right)\left(12-\dfrac13i\right) a+bi a b b i=\sqrt{-1} b=\dfrac{1}{6} b=-\dfrac{1}{6} b=\dfrac{49}{6} b=\dfrac{52}{9} \qquad\left(\dfrac23+\dfrac12i\right)\left(12-\dfrac13i\right)=\red{8}\blue{-\dfrac29i}\purple{+6i}\green{-\dfrac16i^2} i^2=-1 a+bi \qquad b=\dfrac{52}{9} \qquad (3g-4)(2g-8)=ag^2+bg+c a b c a -32 -16 5 6 \qquad 3g(2g)+3g(-8)-4(2g)-4(-8) \qquad 6g^2-24g-8g+32 \qquad 6g^2\blue{-24g}\blue{-8g}+32 \qquad 6g^2-32g+32 a g^2 6 calling card, which was a gift from her grandmother. The rate to call Japan, where her boyfriend is living, is per minute. Her family is in Turkey, where the calling rate is per minute. Derin promised her grandmother she would spend at least of her minutes on keeping in touch with family. Which of the following systems of inequalities represents the relationship between , the number of minutes Derin could call Japan, and T \leq 208 - 1.6J T + J \geq 30 T \leq 25 - 0.19J T + J \geq 30 T \leq 208 - 1.6J T \geq 30 T \leq 25 - 0.19J T \geq 30 30 \qquad T \geq 30 T \leq 208 - 1.6J T \geq 30 \qquad 2(y-12)+y^2=0 y=a y=b ab-a-b -20 -22 -24 -26 -24 2 -24 1 -24 -1 24 2 -12 -2 12 6 -4 -6 4 a=-6 b=4 ab-a-b -22 4 l w l w 4 w l \qquad w=\dfrac{1}{2}l+4 w=\dfrac{1}{2}l+4 y=mx+b w=\dfrac{1}{2}l+4 \dfrac{1}{2} y 4 \qquad \qquad \qquad \qquad \text{Big Island's Average Monthly Rainfall} r (\text{in}) m m=1 m=2 4^{\text{th}} 0 \text{ in} 0.25 \text{ in} 0.60 \text{ in} 0.85 \text{ in} 0.85\text{ in} (4, 0.6) 0.6\text{ in.} \qquad 0.85-0.60=0.25 0.25 2+2(8347-4783) = -2j -j -j 2 2 6 (\text{cm}) 10\text{ cm} 90\% 90\% 0.90 \qquad\qquad V_{\text{soup}}\approx282.743\cdot0.90\approx254.469\text{ cm}^3 254\text{ cm}^3 792 20\% z m 792 \qquad z+m=792 20\% 1.2 20\% \qquad z=1.2m 1.2m z 2.2 \qquad m=360 360 360 792 360 1.2 20\% 432 2 2 432 \qquad v=74-32t , of the t-shirt, in feet per second, -32 (\text{ft}) (\text{sec}) \qquad v\text{ ft per sec}=74 \text{ ft per sec}\pink{-\dfrac{32\text{ ft per sec}}{1\text{ sec}}}t\text{ sec} -32 32 t \red{\text{subtract }74} \blue{\text{divide by }-32} \gray{\text{multiplying by }\dfrac{-1}{-1}} 40 50 40 50 t \red{\text{subtract }74} \blue{\text{divide by }-32} \green{\text{flip the inequality}} 0.75 1.06 40 50 v (0,74) t v=74-32t 0 74 1 42 2 10 3 -22 4 -54 t 1 v 32 \qquad \qquad \bullet -32 32 \bullet \qquad t=\dfrac{74-v}{32} \bullet 0.75 1.06 40 50 \bullet \qquad \qquad \dfrac{1}{f} = \dfrac{1}{o} + \dfrac{1}{i} f o i o=f-i o=fi(i-f) o = \dfrac{fi}{i-f} o=\dfrac{1}{i-f} o o \blue{\text{Subtract } \dfrac1i } \, \, \dfrac1f \, \, \dfrac1i \, \, fi -1 o = \dfrac{fi}{i-f} \qquad\dfrac{2x}{x-3} - \dfrac{x+3}{x-3} x\ne3 1 \dfrac{x+3}{x-3} \dfrac{2x}{x-3}-1 \dfrac{3x+3}{x-3} x+3 \qquad \dfrac{2x}{x-3} - \dfrac{x+3}{x-3}=\dfrac{2x-x-3}{x-3} \quad \dfrac{2x-x-3}{x-3}=\dfrac{x-3}{x-3}=1 \qquad\qquad 1 \overline{JK} \overline{LM} \overline{JL} \overline{KM} \overline{JL} 8 \overline{LM} 10 \overline{JM} \overline{HK} \dfrac45 \approx \tan(38.66^\circ) \beta^\circ 30.93^\circ 38.66^\circ 48.33^\circ 51.34^\circ \overline{JL} \overline{LM} \theta^\circ \overline{JK} \overline{LM} \overline{HK} \overline{JM} \angle JKH \angle LMJ \beta^\circ 180 200 (\text{dB}) I \text{dB} 60 120 t tI 200 \text{ dB} I t = 0 200 (t, I) = (0, 200) I t = 60 t = 60 I t = 60 . Which of the following functions best describes the additional amount of money Marta will have to spend if she increases each side of the fence by f(m) = 1.5m f(m) = 3m f(m) = 6m f(m) = 12m 3m 3m 4 12m \qquad f(m)=12m f(m) = 12m a b \qquad 2a 99\% 101\% 0.99 1.01 \qquad 0.99(2a) = 1.98a \space \space 1.01(2a) = 2.02a b 1.45 1 , what was the approximate cost, in dollars, of one gallon of gas? (Note: gallon is approximately 3.785 \text {liters} in 15\text{ ft} 30\text{ ft} 800\text { ft}^2 3.4 5 6.7 17.5 x A 2x+30 2x+15 A(x)=(2x+30)(2x+15) 800\text { ft}^2 3.4\text{ ft} x = a(y + b) a b x = a(y + b - 2) y 2 y y 3.5 y 5.5 h T (^\circ\text{F}) 1.2 11^\circ\text{F} 1.2 5^\circ\text{F} 20\% 11^\circ\text{F} 20\% 5^\circ\text{F} y=\red{a}\cdot \blue{b}^{\large\purple{x}} \red a \blue b \purple x 1 \blue b >1 \purple{\dfrac{T}{5}} 1 \blue{1.2} \blue{120\%} 20\% T=0 \red{11} \blue{1.2} \purple{\dfrac{T}{5}}=1 20\% 5^\circ\text{F} C (\text{g/L}) s 10 8 \text{g/L} sC s s s = 10 s = 10 8 \text{g/L} s \ge 10 C = 8 \qquad (3-i)^3 i=\sqrt{-1} 8-26i 18-26i 27-26i 30-26i (3-i)(3-i) i^2=-1 (8-6i) (3-i) i^2=-1 \qquad18-26i Y 2 3 \dfrac{1}{5} (a^m)^n=a^{mn} \dfrac{1}{5} a^m\cdot b^m=(a\cdot b)^m Y=36 \qquad Y=36 11^\text{th} 2.70^\circ \qquad \dfrac{\left(\dfrac{ab}{xy}\right)}{\left(\dfrac{ij}{mn}\right)} = \left(\dfrac{ab}{xy}\right) \cdot \left(\dfrac{mn}{ij}\right) \qquad = \dfrac{abmn}{xyij} \qquad \dfrac{a(bm)n}{x(yi)j} 4 5 24 \dfrac14 \blue5 \green x \purple4 \blue5 \green x 24 \dfrac14 \qquad\dfrac{1}{4}\green x = \blue5 \dfrac{4}{1} 4 \green x \green x = \green {20} \green{20} \green{20} \dfrac{3}{4} \left(1 - \dfrac{1}{4}\right) \red{15} \red{15} \purple4 \blue5 \green {20} 24 \red{15} \purple4 19 \qquad4-4a-(5+a)(5-a) (a-7)(-a+3) (-a+7)(a+3) (a-7)(a+3) (a+7)(a-3) 25-a^2 \qquad4-4a-(25-a^2) -1 \qquad4-4a\red{-1}(25-a^2) \red{-1} \qquad4-4a-25+a^2 \qquad\red4\blue{-4a}\red{-25}\purple{+a^2} \qquad a^2-4a-21 -21 -4 -7 3 \qquad(a-7)(a+3) H E 0.3 E B 0.5 0.84 \sin(0.84) \approx 0.745 \cos(0.84) \approx 0.667 \tan(0.84) \approx 1.116 P T 0.72 0.89 1.07 1.20 0.84 0.8 \overline{PT} PT 1.20 P T (\mu\text{V}) 620 61 640 38 660 24 680 15 700 9 720 6 740 4 (\mu\text{V}) 99.9\% 20 \mu\text{V} 20 \mu\text{V} 20 \mu\text{V} 20 \mu\text{V} 20\mu\text{V} \red{\text{common difference}} \blue{\text{common ratio}} \red{\text{linear}} \red{\text{common difference}} 20\mu\text{V} \blue{\text{exponential}} \blue{\text{common ratio}} \red{\text{difference}} \blue{\text{common ratio}} 0.63 20\,\mu\text{V} \blue{\text{exponential}} 20 \mu\text{V} 30 2 1 9 10 20 21 j h j h 30 \qquad j+h \le 30 1 2 h 2j \qquad h \ge 2j 3 6 30-h h h\ge2j h 2j 2j \qquad 10 48 \% 76 \% 18\% 7\% 29\% million on advertising and million on advertising and million on advertising and million on advertising and 18\% 7\% 29\% 3 \qquad R\geq 41.76 \qquad \:\: A \geq 16.24 \qquad \:\: R \leq 67.28 - A \qquad \qquad \qquad (20,45) 3 million on advertising and \sin49^\circ \cos \angle C \sin \angle C \cos \angle A \sin \angle B 180^\circ \angle A \angle C 90^\circ \sin\theta=\cos(90^\circ-\theta) \sin49^\circ=\cos(90-49)^\circ=\cos41^\circ \cos41^\circ \cos\angle C \sin49^\circ=\cos\angle C \qquad\ \ \ \sin49^\circ=\dfrac{CB}{AC}\qquad \ \ \cos\theta=\dfrac{\text{length of the side adjacent to } \theta}{\text{length of the triangle's hypotenuse}} \qquad\ \ \ \cos\angle C=\dfrac{CB}{AC}\qquad \sin49^\circ \cos\angle C xy y=2(1.75)^x y=2(0.75)^x y=0.75(2)^x y=1.75(2)^x y 2 y=a(b)^x a y b y 2 \qquad y=2(1.75)^x\ \qquad y=2(0.75)^x a b >1 a b 00 a x y (a,b) y y=3x x x x^2 a>0 x (a,b) a a=\dfrac{5}{4} \overline{AB} \overline{BC} \overline{BT} 9 \overline{AC} \overline{BC} 15 h h 11 d s \qquad d(s) = 10.7 - 1.2s^2 d d(s) 8 8 - 1.2(s-1.5)(s+1.5) 8 + 1.2(2.25 - s^2) 8(1 - 0.15s^2) + 2.7 11.9-1.2(s - 1)^2 - 2.4s s s d 8 \qquad d(s) = k(s - r_1)(s - r_2) k r_1 r_2 d(r_1) d(r_2) 0 \qquad d(s) = k(s-r_1')(s-r_2') + 8 d(r_1') d(r_2') 8 \qquad 8 - 1.2(s-1.5)(s+1.5) d(s) \qquad 8-1.2(s-1.5)(s+1.5) \qquad xy y=P(x) P(x)=x^2+6x+8 P(x)=x^3+6x^2+8x P(x)=x^2-6x+8 P(x)=x^3-6x^2+8x x=0 x 2 x=\pink0 x=\gray{-4} x=\purple{-2} x=\red0 x=\green{4} x=\blue{2} x 2 \qquad P(x)=x^3+6x^2+8x \qquad I = 870\pi^2a^2f^2 I \left( \dfrac{\text W}{\text m^2} \right) a (\text m) f (\text{Hz}) 0.05 \, \dfrac{\text W}{\text m^2} 3 \times 10^{-5} \, \text{m} 8.77 80 6{,}500 4 \times 10^7 v f\approx \pm 80.4 \, \text{Hz} 80 \, \text{Hz} a a (x, y) -\dfrac{3}{2} \dfrac{5}{6} 3 y y a a a (x, y) \qquad-\dfrac{3}{2} \quad S = 537.5 - 1.25p S p 125 537.5 537.5 - 1.25p p 1.25p 537.5 537.5 537.5 - 1.25p 537.5 - 1.25p 11 \text{(ft)} 4.5 \text{ ft} h 10.0 \sin(35^\circ) \approx 0.57 \tan(35^\circ) \approx 0.70 35^\circ 2 \ell 34.28 34 BC = 4 1.5 C 6 12 8\pi-6 16\pi-12 \qquad A = \dfrac{1}{2}\theta r^2 A \theta r \theta 2\pi \theta 2\pi A 16\pi - 12 q(2q^4+12q^3+3q^2) \qquad\quad(2q^5+7q)+(5q^5+3q^3) \qquad =2q^5+7q+5q^5+3q^3 \qquad =2q^5+5q^5+3q^3+7q \qquad =7q^5+3q^3+7q q q \qquad =q(7q^4+3q^2+7) \qquad \overline{XY} W \overline{ZY} 5 V \overline{XZ} 6 \overline{VW} \overline{XY} \overline{XY} 18 7 8 20 0.875 2.5 17.5 23 7:8 \qquad \dfrac{7}{8}= \dfrac{x}{20} x 17.5 20\ \text{rolls} 62 648 2\% 90\% 8\% 12\% 10\% 12\% 13\% 15\% 11\% 15\% 90\% \qquad\dfrac{62}{648}=0.0956...\approx10\% 10\pm2 \qquad10-2=8 \qquad10+2=12 8\% 12\% 8\% 12\% 1\text{ ft}^2{:}\:900\text{ ft}^2 , which would be equivalent to per square foot square foot, we can set up a proportion to determine the number of square feet, , that the property has if it sells for s 1\text{ ft}^2:900 \text{ ft}^2 d 1{,}800 \qquad \dfrac{1}{900 }=\dfrac{d}{1{,}800} s \qquad d=\dfrac{1}{900}\times 1{,}800=2 2 (f^2-2) (f^7+2f^5+4f^3+8f) \quad\qquad (\blue{f^2}\pink{-2}) \cdot (f^7+2f^5+4f^3+8f) \qquad=f^9+2f^7-2f^7+4f^5-4f^5+8f^3-8f^3-16f \qquad = f^9 + 0 + 0 + 0 -16f \qquad = f^9 -16f f \qquad = f(f^8 -16) 80 (\text{in}) 12 14\,\text{in} 26\,\text{in} 34\,\text{in} 46\,\text{in} 12\,\text{in} l\,\text{in} \left(l-12\right)\,\text{in} \qquad l+l+\left(l-12\right)+\left(l-12\right)=80 \qquad4l-24=80 26\,\text{in} \qquad \dfrac{3}{i}+\dfrac{2}{i^2} i=\sqrt{-1} 3i+2 3i-2 -3i+2 -3i-2 i^2=-1 2008 2009 2010 2011 2012 | | | | through \qquad11{,}864-11{,}223=641 \qquad i^{{101}} i=\sqrt{-1} 1 -1 i -i i^2=-1 101 4 \qquad i^{{101}}=i 2006 . For each year before or after , the average price per square foot increased by approximately . In what years could the average home price per square foot be 2003 2009 2002 2010 2000 2012 1999 2013 y \qquad3.50|y-2006| 98 \qquad 98+3.50|y-2006| 119 y \qquad y=2012 y=2000 2000 2012 \qquad x-1=(2-x)^2 0 \dfrac{5\pm\sqrt{5}}{2} \dfrac{-1\pm\sqrt{21}}{2} ax^2+bx+c=0 \qquad x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a} \dfrac{5\pm\sqrt{5}}{2} y=-\dfrac{1}{x} x y y=\dfrac{1}{x} 0 0 x -2 -1 -\dfrac{1}{2} \dfrac{1}{2} 1 2 y -\dfrac{1}{2} -1 -2 2 1 \dfrac{1}{2} y=-\dfrac{1}{x} y=\dfrac{1}{x} x f(-x)=-f(x) f(x)=\dfrac{1}{x} y=-\dfrac{1}{x} 30^\circ 12 \text{(km)} 31 \text{ km} 60^\circ d \blue{x_1} \blue{x_2} \pink{y_1} \pink{y_2} \blue{x_1} \blue{x_2} \pink{y_1} \pink{y_2} 42 \text{ km} P s 0 \le s \le 15 P \qquad P = \dfrac{1}{3}s^2-5s+18 P \qquad P = a(s-s_0)^2 + P_0 a (s_0,P_0) a P (7.5, -0.75) 0.75 7.5 7.5 \qquad\dfrac{7}{x-5} + \dfrac{4}{5-x} x\neq5 \dfrac{11}{x-5} \dfrac{11}{5-x} \dfrac{3}{x-5} \dfrac{3}{5-x} 5-x=\red{-1}(x-5) \qquad\dfrac{7}{x-5} + \dfrac{4}{\red{-1}(x-5)} \dfrac{4}{-1(x-5)}=\dfrac{-4}{x-5} \qquad\dfrac{7}{x-5} + \dfrac{-4}{x-5} \qquad \dfrac{7+-4}{x-5} =\dfrac{3}{x-5} \qquad \dfrac{3}{x-5} (x,y) 0 1 2 \qquad 4x+2y=1 \qquad 3y^2+5y-10=0 y=-\dfrac{5}{2}\pm\dfrac{\sqrt{145}}{2} y=-\dfrac{5}{6}\pm\dfrac{\sqrt{145}}{6} y=\dfrac{5}{6}\pm\dfrac{\sqrt{145}}{6} y=\dfrac{5}{2}\pm\dfrac{\sqrt{145}}{2} ax^2+bx+c=0 1 ax^2+bx+c=0 \qquad x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a} y=-\dfrac{5}{6}\pm\dfrac{\sqrt{145}}{6} a month for a phone plan with a long distance rate of per minute during off-peak hours. Without this plan, her local telephone provider would charge her per minute for long distance calls during off-peak hours. If Zoe makes calls only during off-peak hours and saved m . Therefore, represents the cost, in dollars, for for this plan, her total phone bill can be represented by the expression per minute to call long distance during off-peak hours by her local provider. Therefore, if she calls long distance for minutes during non-peak hours, she will be charged this month by purchasing the long distance plan, we can deduce that the cost of her long distance bill *without* the plan would have been m 128 for each regular yard he mows, and he charges an extra for each large yard that he mows. In one week he mowed more large yards than regular yards and made . If 10(r+6)+15r=265 10(r+6) + 5r=265 10r+15(r+6)=265 10r + 5(r+6)=265 r for each yard that he mows, so he earns r 6 r+6 for each large yard that he mows, he earns total for mowing yards, an equation that could be used to solve for \qquad{10r}+{15\left(r+6\right)}={265} \qquad 6{,}000 = bu + 4{,}000 b 600{,}000 + 100bu + 400{,}000 \qquad 600{,}000 + 100bu + 400{,}000 100 100bu + 400{,}000 600{,}000 \qquad c(ax-b)-d(b-ax) (ax-b)(c+d) (ax-b)^2(c+d) (b-ax)^2(c-d) (ax-b)(b-ax)(c-d) (ax-b) (b-ax) -1 -1 \qquad c(ax-b)-d (-1)(-b+ax) \qquad c(ax-b)+d(ax-b) (ax-b) \qquad c(ax-b)+d(ax-b)=(ax-b)(c+d) (ax-b) (c+d) c(ax-b)-d(b-ax) \qquad(ax-b)(c+d) 7:4 4:7 3:4 7:3 11:4 7 7:4 7 4 \qquad 7\:\text{total} -4\:\text{in cups} = 3\:\text{remaining} 3 7 3 7:3 3a-5b\neq0 \qquad\dfrac{9a^2-30ab+25b^2}{3a-5b} 3a-5b 3a+5b 9a+25b^2 3a-30ab+5b \qquad 9a^2-30ab+25b^2=(3a-5b)^2 \qquad\dfrac{(3a-5b)(3a-5b)}{(3a-5b)} 3a-5b 56 140 2{,}000 b b\geq32 b\leq32 b\geq33 b\leq33 \qquad \text {Teddy's weight} + \text{weight of boxes} \leq 2{,}000 56b b \qquad 140 + 56b\leq2{,}000 140 \qquad 56b\leq1{,}860 56 \qquad b \leq 33.21 b\leq33 950 950 . Which of the following could be the number of sandwiches sold in a month if the owner's revenue decreased s=905 s=995 s=946 s=955 s=500 s=1{,}400 s=500 s=950 s \qquad |s-950| 950 for every sandwich above or below , for which the revenue decreases \qquad |s-950|=\dfrac{45}{0.10}=450 \qquad s-950=\pm450 \qquad s=500 s=1{,}400 \qquad s=500 s=1{,}400 A 70{,}045 23{,}684 B 74{,}577 17{,}046 C 64{,}019 19{,}998 D 60{,}490 x E 69{,}154 15{,}569 5 5 \qquad\dfrac{23{,}684+17{,}046+19{,}998+x+15{,}569}{5} 18{,}990 (\ge) 18{,}990 \qquad\dfrac{23{,}684+17{,}046+19{,}998+x+15{,}569}{5}\ge18{,}990 \qquad60{,}490 \qquad64{,}019 \qquad70{,}045 \qquad74{,}577 \qquad15{,}569 \qquad23{,}684 \qquad69{,}154-18{,}522=50{,}632 50{,}632 A 16.7\% 70{,}045 \qquad0.167\cdot70{,}045=11{,}697.515 11{,}698 27.7\% 23{,}684 \qquad0.277\cdot23{,}684=6{,}560.468 6{,}560 19.5\% A b 69{,}154 b \qquad\text{total active army bonuses}=69{,}154b 15{,}569 b E \bullet \qquad\dfrac{23{,}684+17{,}046+19{,}998+x+15{,}569}{5}\ge18{,}990 \bullet 50{,}632 \bullet 19.5\% A \bullet E \qquad\sqrt{\dfrac{3380}{2000}} \dfrac{13}{10} \dfrac{13}{100} \dfrac{169}{10} \dfrac{169}{100} \purple{\text{power of a quotient}} \left(\dfrac xy\right)^a=\dfrac{x^a}{y^a} \qquad\dfrac{13}{10} 4 w h \dfrac23 \dfrac23 \alpha \beta \dfrac\beta\alpha \alpha h w \beta h \cdot \dfrac23 w \cdot \dfrac23 w : w \cdot \dfrac23 h : h\cdot\dfrac23 \alpha = \beta 1 = \dfrac\beta\alpha \alpha \beta \dfrac\beta\alpha a a (x, y) y = 1.3 -2.1 -1.1 2 a y a x 1.3 y x x x a = -2.1 y \qquad V = \pi r^2h V r h r = \dfrac {\sqrt {Vh}}{ \pi } r = \sqrt{ \dfrac {Vh}{ \pi}} r = \dfrac {\sqrt V}{ \pi h} r = \sqrt{ \dfrac {V}{ \pi h}} r^2 \pink{\text{dividing by } \pi} \blue{\text{dividing by } h} \pi h r \purple{\text{take the square root of both sides of the equation }} \sqrt[2]{x}=\sqrt{x} \qquad r = \sqrt{ \dfrac {V}{ \pi h}} \qquad B = 0.55A B A B A 0.55\% 0.45\% 55\% 45\% A 0.55 B 55\% 45\% \qquad 100\% - 55\% = 45\% 45\% 2000 68 16 14 75 2001 2006 2008 2014 16 14 \dfrac{8}{7} t 2000 \dfrac{8}{7}t t 2000 \dfrac{8}{7}t+68 t 2000 75 75 t t\approx 6\large\frac{1}{8} 6 2006 75 2006 75 2 (\text{cm}) 2 30\% 0.5\,\text{cm} 2 3 4 5 2\,\text{cm} 30\% T(n) \text{cm} n \qquad T(n)=2(1-0.30)^n=2(0.70)^n n T(n)\leq0.5\,\text{cm} n=2 \qquad T(2)=2(0.70)^2\approx0.98 n=3 \qquad T(5)=2(0.70)^3\approx0.69 n=4 \qquad T(4)=2(0.70)^{4}\approx 0.48 n=4 4 c c=12 c -12 c 12 c \left(\dfrac52\right) y y \qquad\dfrac{c}{-4}=-3 c=12 c 12 c 12 \qquad w(x)=-\dfrac13x^2+3 x x \qquad -\dfrac13(x^2-9) -\dfrac{1}{3}(x-3)(x+3) -\dfrac{1}{3}(x-1)(x+1)+\dfrac83 -\dfrac{1}{3}(x-2)(x+2)+\dfrac53 \qquad w(x) = -\dfrac13\left(x^2 - 9\right) (x^2 -9 ) \qquad w(x) = -\dfrac{1}{3}(x-3)(x+3) \qquad w(x) = -\dfrac{1}{3}(x-3)(x+3) 75\% 32 15\% h t 75\% \qquad h=0.75t 32 h+32 15\% 1.15t 15\% 100\% \qquad h+32=1.15t h=0.75t \qquad 0.75t + 32 = 1.15t 0.75t \qquad 32 = 0.4t 0.4 t t=80 t=80 h \qquad h=0.75t \qquad h=0.75(80) = 60 60 f g f(x) = 1+2x g(f(x)) = x+3 g(5) 5 4 6 -3 g(f(x)) f(x) 1 g(1) f(x) 1 x g(f(x)) x = 2 f(2) = 1 g(1) g(1) = 5 18 17\% 35 54 94 106 c 18 17\% 0.17c = 18 c 0.17 \qquad \dfrac{18}{0.17} \approx 105.9 106 \qquad -p+60 = -h+ 10{,}000 h p=10 h p=10 h 5 <2x+3<11 -4x-6 -10 -22 -22 -10 1 4 4 1 5 <2x+3<11 -4x-6 -4x-6=-2(2x+3) -2(2x+3)=-4x-6 -4x-6 -2 aa x a b x<2 x>5 5c_2 c_1 -3+\sqrt{2} -3+\sqrt{11} 3+\sqrt{2} 3+\sqrt{11} 2 c^2+6c=2 c^2 1 c 9 c=-3+\sqrt{11} c=-3-\sqrt{11} c_1=-3+\sqrt{11} \qquad v=331.3\sqrt{1+\dfrac{T}{273.15}} v T T=273.15\left(\dfrac{v^2}{331.3^2}-1\right) T=273.15\left(\dfrac{v^2}{331.3^2}\right)-1 T=273.15(v-331.3)^2 T=273.15\left(\dfrac{v-331.3}{331.3}\right)^2 \red{\text{dividing by }331.3} \green{\text{square}} \blue{\text{subtract }1} \purple{\text{multiply by }273.15} \qquad T=273.15\left(\dfrac{v^2}{331.3^2}-1\right) \qquad -2>\dfrac{3(b+4)}{-2} b<-3 b< -\dfrac{16}{3} b > -\dfrac{8}{3} b>0 \gray{-2} 3 \pink{12} \blue3 b>-\dfrac83 per month in overhead cost. Each DVD costs per night and each Hi-Def disc is per night. The company wishes to make a profit of at least 350 1200 900 900 1450 500 1875 450 D H \qquad 1.49D + 1.89H , so that means the expression for profit must be *greater than or equal to* . Turn this into an inequality and solve for 1875 450 M 10 P 2.43 2.43 2.43 2.43 \red{a}\cdot \blue{b}^{\large\purple{x}} \red a \blue b \purple x 1 \blue b<1, P M \purple{\dfrac{M}{2.43}} 1 M 2.43 2.43 \qquad \sqrt{2x+4}=2+x x 0 x=0 x=-2 x=\blue0 x=0 x = \blue{-2} x=0 x=-2 0\cdot (-2)=0 0 1.4 (\text{m}) w 1.6\,\text{m} 1.7\,\text{m} 2.1\,\text{m} 2.4\,\text{m} 30^\circ-60^\circ-90^\circ s 60^\circ \sqrt3s. \qquad \sqrt3\cdot 2\approx3.464 1.4\,\text{m} 1.4\,\text{m} 2.4\,\text{m} 2 67 6 2 61 73 2 61 73 2 61 67 2 67 73 2 61 73 in change in her pocket. The 21 24 25 29 , and an equal number of nickels and dimes, worth and , respectively. Because the number of nickels and dimes is equal, we can use the expression , where 16 \qquad 35A + 28P = 250 A P . The caricature artist charges per hour and the face painter charges per hour. What is the meaning of the 35A 35A 35 A 35A A A P \blue{\text{units}} 35A A 65 92 5{,}200 \pi \approx 3.14 4 5 8 25 r h \qquad V=\pi r^2h V\leq 5{,}200 r\leq 5 5{,}200 5 \qquad4+5m=4m+1+m m=0 m=1 m m 4=1 for each regular driveway and he charges an extra for each large driveway that he shovels. After a snowstorm he shovels fewer large driveways than regular driveways and makes 3 4 7 9 r for each one, so he earns r 3 r-3 for each large driveway that he shovels, he earns 7 9 4,1988 16 10,1987 17 15,1988 14 21,1987 5 22,1988 11 14,1988 3 1,1987 12 20,1989 10 2,1987 18 7,1987 15 20,1987 2007 2007 1 30 2007 1 30 1987 1989 2007 1987 6 11 2007 1987 2007 1987 1987 1986 1988 1989 1987 1989 9 11 1 30 2007 2007 1 30 2007 1 30 \ P(t)= 350\, (2)^{t} , P(t) t 350 2 350 2 t=1 2 2 \qquad (8c+5)^3 512c^2+125 (8c+5)(64c^2-40c+25) 128c^3+1040c^2+220c+625 512c^3+960c^2+600c+125 \qquad (8c+5)^3=(8c+5)(8c+5)(8c+5) 8c+5 \qquad 512c^3+960c^2+600c+125 x 0 x \qquad w(x)=-\dfrac14(x^2-12) w(x) x \qquad -\dfrac14x^2+3 -\dfrac{1}{4}(x-\sqrt{12})(x+\sqrt{12}) -\dfrac{1}{4}(x-2)(x+2)+2 -\dfrac{1}{4}(x-4)(x+4)-1 y (0,3) 3 \qquad w(x) = -\dfrac14x^2+3 6 (\text{in}) 16\text{ in} 126 \pi 144 \pi 180 \pi 504 \pi \qquad V = \pi r^2 h V r h \qquad V = \dfrac{4}{3} \pi r^3 V r 6\text{ in} \, \dfrac{6}{2} = 3\text{ in} 16 - 3 - 3 = 10\text{ in} \qquad V_\text{tank} = \pi r^2 h + \dfrac{4}{3} \pi r^3 r h 126 \pi \text{ in}^3 f g f(x)=g(x+5)+6 f(x)=g(x-5)+6 g(x)=f(x-5)+6 g(x)=f(x+5)+6 c>0 h(x)\rightarrow h(x+c) h c h(x)\rightarrow h(x-c) h c h(x)\rightarrow h(x)+c h c h(x)\rightarrow h(x)-c h c 6 g f g 5 6 f g 5 g(x)\rightarrow g(x-5) 6 g(x-5)\rightarrow g(x-5)+6 f(x)=g(x-5)+6 \qquad \dfrac16\sqrt{k}-3=1-\sqrt k 1.9 2.9 3.4 11.8 \sqrt k k=\left(\dfrac{24}{7}\right)^2 k=\dfrac{576}{49}\approx 11.8 11.8 \qquad29=3(x+7)^2+41 i=\sqrt{-1} x=-7+2i x=-42-12i x=-\dfrac76+\dfrac{\sqrt{443}}{6}i x=-7-\dfrac{\sqrt{123}}{3}i 29 y a=3 2 \qquad a=3,\qquad b=42,\qquad c=159 i=\sqrt{-1} \qquad x=-7+2i x=-7-2i \qquad x=-7+2i 62 61.98 1 (^\circ\,\text{C}) 0.00056 1.0003^\circ\,\text{C} 3.57^\circ\,\text{C} 10.003^\circ\,\text{C} 35.71^\circ\,\text{C} d \red{61.98} 0.00056 \green{0.00056d} \qquad\red{61.98}+\green{0.00056d} \purple{62} \qquad\red{61.98}+\green{0.00056d}=\purple{62} d 35.71^\circ\,\text{C} O 5 X Y 7 A \qquad A = \dfrac{1}{2}\theta r^2 A \theta r \qquad s = r \theta s r \theta s r \theta \theta r A A 17.5 \qquad\dfrac{3}{c+4} +\dfrac{1}{4} c\neq-4 1 \dfrac{4}{c+8} \dfrac{c+16}{4c+16} \dfrac{c+16}{8c+32} 4(c+4) \dfrac{4}{4} \dfrac{c+4}{c+4} \qquad\qquad\dfrac{12}{4c+16}+\dfrac{c+4}{4c+16}=\dfrac{12+c+4}{4c+16}=\dfrac{c+16}{4c+16} \qquad \dfrac{c+16}{4c+16} 3 8 (\text{cm}) 16\,\text{cm} 12\,\text{cm} 9\,\text{cm} 3 (\text{cm}^3) \pi\approx 3.14 804\,\text{cm}^3 1{,}055\,\text{cm}^3 1{,}859\,\text{cm}^3 7{,}436\,\text{cm}^3 r h \qquad V=\pi r^2h \qquad V=\pi (4)^2(16)+\pi (4)^2(12)+\pi (4)^2(9) \dfrac12(8)=4 1{,}859\,\text{cm}^3 \qquad | -3x + 1 \: | \: > -6 \dfrac53 < x < \dfrac73 x < \dfrac53 \:\:\:\: \text{or} \:\:\:\: x > \dfrac73 \qquad | -3x + 1 \: | \: > -6 x x \qquad k\left(k-\dfrac12\right)=-\dfrac1{16} k=\dfrac18 k=\dfrac14 k=-\dfrac18 k=\dfrac18 k=-\dfrac14 k=\dfrac14 \qquad k=\dfrac14 4 4 40{-49} 4 5 9 50{-59} 24 60{-69} 4 23 50 59 45.8\% 45.8\% 100 0.458 24 11 \qquad 2 + \dfrac{4}{v} - \dfrac{3}{2v^2} v<0 \dfrac{-12}{v^3} \dfrac{2v^2 + 2v - 3}{2v^2} \dfrac{4v^2 + 8v - 3}{2v^2} \dfrac{4v^2 + 8v - 3}{6v^2} 2v^2 2 \qquad \dfrac 2 1 + \dfrac{4}{v} - \dfrac{3}{2v^2} \blue{\dfrac {2v^2}{2v^2}} \purple{\dfrac{2v}{2v}} \qquad \dfrac{4v^2 + 8v - 3}{2v^2} 135^\circ 2 (\text{m}) 2.4\,\text{m} d d>\dfrac{0.8\sqrt{3}}{3}\,\text{m} d>0.4\sqrt2\,\text{m} d>\dfrac{4.8\sqrt{3}}{3}\,\text{m} d>2.4\sqrt2\,\text{m} 2 2.4-2=0.4 135^\circ (135-90)^\circ=45^\circ d \qquad d>0.4\sqrt2\,\text{m} \qquad4-\dfrac{1}{3}z=-7z+6 z=\dfrac3{10} z=-\dfrac3{10} z=\dfrac{20}3 z=\dfrac{20}{6} z \red{7z} \blue{4} \green{\dfrac3{20}} z=\pink{\dfrac{3}{10}} z=\pink{\dfrac{3}{10}} (z) \qquad az+ b= cz + d a\ne c z=\dfrac3{10} z=\dfrac3{10} 20 (\text{cm}) 10\ \text{cm} 1{,}250 r h \qquad V= \pi r^2h 1{,}250\text{ cm}^3 1{,}250\text{ cm}^3 \qquad\dfrac{6{,}283.19}{1{,}250}\approx5.03\approx5 5 \theta=\dfrac{4\pi}{9} \text{radians} \theta 20^{\circ} 36^{\circ} 80^{\circ} 720^{\circ} 2\pi 360^{\circ} \qquad 2\pi \text{ radians}=360^{\circ} 2\pi 1\text{ radian}=\dfrac{180}{\pi}^{\circ} 2\pi \text{ radians}=360^{\circ} 9 \dfrac{2\pi}{9} \text{ radians}=40^{\circ} \dfrac{4\pi}{9} 2\cdot \dfrac{2\pi}{9} \dfrac{4\pi}{9}\text{ radians} 2\cdot 40^{\circ}=80^{\circ} \qquad\dfrac{4\pi}{9}=80^{\circ} 1 48.5 4 t p 48.5p < 4t 48.5p > 4t 4p < 48.5t 4p > 48.5t 48.5 1 t 4 1 144\text{ ft}^2 50 \text { ft} x x(72-x)=50 x(25-x)=144 x(144-2x)=50 x(50-2x)=144 x y A P \qquad A=xy \qquad P=2x+2y 50 \text{ ft} 50\text{ ft} 144\text{ ft}^2 \qquad xy=144 \qquad 2x+2y=50 y y y x(25-x)=144 xy y=2(x-4)^2+2 y=-(x-a)^2+12 a a \ \ \ 4 -4 \ \ \ 8 -8 y=a(x-h)^2+k a h k x=h y=2(x-4)^2+2 x=4 y=2(x-4)^2+2 y=-(x-a)^2+12 a 4 a=4 xy (-2,4) (1,1) x^2+y^2-4x-8y+2=0 x^2+y^2+4x-8y+2=0 x^2+y^2+4x+8y-2=0 x^2+y^2+4x-8y+14=0 (\green h,\purple k) \red r \qquad (x-\green h)^2+(y-\purple k)^2=\red r^2 (\green{-2},\purple4) \qquad (x-(\green{-2}))^2+(y-\purple4)^2=\red r^2 \qquad (x+2)^2+(y-4)^2=\red r^2 (1,1) (x,y) \red r^2 \qquad (x+2)^2+(y-4)^2=18 \qquad x^2+y^2+4x-8y+2=0 \left(z^{3+t}\right)^{4}=z^{20} z t 2 \sqrt{8} 4 p \qquad (a^m)^n=a^{mn} z^{12+4t}=z^{20} \red{z}^{12+4t} \red{z}^{20} \text{\red{equal bases}} t t=2 y (\text{mpg}) x (\text{mph}) \qquad\qquad \qquad \qquad \qquad\text{ Fuel Economy vs Speed} 46\text { mpg} 46\text{ mph} 46\text { mpg} 0 \text{ mph} 70\text { mph} 46\text{ mpg} (46,30.7) y x \text{mph} y \text{mpg} (46, 30.7) 30.7\text { mpg} 46\text { mph} 46\text{ mph} 80 35\% 73 28.8\% 38.3\% 65.0\% 71.2\% 80 35\% 80 \qquad 0.35 \times 80 = 28 28 80 \qquad 80 - 28 = 52 (52) 73 \qquad73 - 52 = 21 \qquad\dfrac{21}{73} \times 100 \approx 28.8\% 28.8 \% C d {\qquad C(d)=9300\cdot0.8^{\large d}} {0.0000019\cdot(1-0.2)^{d-100}} {9279\cdot(1-0.2)^{d+100}} {9300\cdot(1-0.002)^{100d}} 100 \green{100d} \dfrac{100}{100} {\left(x^{\large y}\right)^{\large z}=x^{{\large y}\cdot {\large z}}} \red{0.998} 1 \qquad1-\red{0.998}=\blue{0.002} 0.2\% \red{0.998} 1-\blue{0.002} \qquad{9300\cdot(1-\blue{0.002})^{\green{100d}}} \qquad \dfrac{xy}a - \dfrac{x^2y^2}b xy \qquad\quad \dfrac{xy}a - \dfrac{x^2y^2}b xy xy \angle{QRS} \angle{QRS} \theta \theta \qquad\qquad \cos\theta=\dfrac{\red{\text{Length of the side adjacent to }\theta}}{\blue{\text{Length of the triangle's hypotenuse}}} QRS \angle{QRS} \red{\text{{adjacent}}} \angle{QRS} \red {5\sqrt5} \blue{\text{{hypotenuse}}} QRS \blue{10\sqrt5} \qquad\qquad \cos\theta=\dfrac{\red{5\sqrt5}}{\blue{10\sqrt5}}=\dfrac{1}{2} 0^\circ<\theta<90^\circ \cos60^\circ \dfrac{1}{2} \theta=60^\circ \angle{QRS} 60^\circ \qquad \dfrac{3k}{4}\leq \dfrac{3+2k}{5} \purple5 \blue{4} \pink{8k} \qquad (ax+5)(x+v) \qquad ax^2 + 25x + 25 a v a \qquad\quad (ax+5)(x+v) \qquad =ax^2+5x+axv+5v x \qquad =ax^2+(5+av)x+5v \qquad=ax^2 + 25x + 25 5+av=25 5v=25 5 v=5 a \qquad \sqrt{x}=\sqrt{ 3x} \qquad \sqrt{x}=\sqrt {3x}=\sqrt 3\sqrt x 1-\sqrt 3 \sqrt x=0 x=0 x=\blue0 x=0 0 \qquad U=\dfrac12kx^2 U x k x=\sqrt{\dfrac{kU}{2}} x=\sqrt{\dfrac{2U}{k}} x=\dfrac{\sqrt{2U}}{k} x=\left({\dfrac{2U}{k}}\right)^2 \purple{\text{multiply both sides by } 2} \dfrac 1 2 \red{\text{divide by }k} x \blue{\text{take the square root of both sides of the equation}} \sqrt[2]{a}=\sqrt{a} \qquad x=\sqrt{\dfrac{2U}{k}} \qquad \dfrac{5}{z} - \dfrac{2z+4}{z+2} = - 3 z \qquad z(z+2) \qquad \dfrac{5\blue{(z+2)}}{z\blue{(z+2)}} + \dfrac{-\pink{z}(2z+4)}{\pink{z}(z+2)} = \dfrac{- 3 \pink{z}\blue{(z+2)}}{\pink{z}\blue{(z+2)}} \qquad \dfrac{5z+10}{z\blue{(z+2)}} + \dfrac{-2z^2-4z}{\pink{z}(z+2)} = \dfrac{- 3z^2 - 6z}{\pink{z}\blue{(z+2)}} \qquad 5z + 10 - 2z^2 - 4z = -3z^2 - 6z \qquad z^2 + 7z + 10 = 0 \qquad (z + 5) ( z + 2) = 0 z -5 -2 z = -5 z = -5 z = -2 0 z = -5 -5 200 A w \qquad A(w) = 100w-w^2 -(w-50)^2 +2500 -(w+20)^2 +140w+400 -(w-10)^2 +80w+100 -(w+10)^2 +120w+100 -1 w -1 \qquad~~~~~~~~~~~~ A(w)=-(w-50)^2+2500 \qquad A(w) = -(w-50)^2 +2500 ( ) ( ) 0.35 2.04 ? 1.44 0.50 0 v h_\circ t h(t) = h_\circ - vt - 16 t^2 t 1.44 t h(t) = 1.44 h(t) v h_\circ h(\purple{0.35}) = \purple{2.04} h(\pink{0.50}) = \pink 0 h_\circ v v h_\circ h(t) = 1.44 t t = 0.4 0.4 1.44 y^M y\neq 0 M y^M M 2 a^m\cdot a^n=a^{m+n} \dfrac{a^m}{a^n}=a^{m-n} a\neq 0 M=\dfrac{5}{12} \qquad M=\dfrac{5}{12} per pound in . The price per pound increased about each year until , and is expected to do so for the next two years. Which of the following graphs represents the relationship between years after , , and price per pound, in , the graph goes through the point . In addition, the slope is \qquad P=0.18t+0.51 \quad g = 15 - \dfrac{m}{32} g m 32 32 32 32 32 m=0 15 g = 15 - \dfrac{m}{32} 15 - \dfrac{m}{32} 15 \dfrac{m}{32} m m m \dfrac{1}{32} \dfrac{1}{32} 32 20 40 (\text{mm}) 0.08\,\text{mm} 20 39.92\,\text{mm} 40.08\,\text{mm} 399.2\,\text{mm} 400.8\,\text{mm} 38.4\,\text{mm} 41.6\,\text{mm} 384\,\text{mm} 416\,\text{mm} t 20 t \qquad |t-40| \qquad \dfrac{|t-40|}{20} 0.08\,\text{mm} t=38.4\,\text{mm} t=41.6\,\text{mm} \qquad 38.4\,\text{mm} 41.6\,\text{mm} R = 60 \alpha^\circ \approx 26.5^\circ \beta^\circ = 12^\circ \sin(26.5^\circ) \approx 0.446 \cos(26.5^\circ) \approx 0.895 \tan(26.5^\circ) \approx 0.499 \sin(12^\circ) \approx 0.208 \cos(12^\circ) \approx 0.978 \tan(12^\circ) \approx 0.213 L h \beta^\circ \alpha^\circ h L \qquad\dfrac{5x^2-33x-14}{x^2-7x} x<6 -26 \dfrac{5x-2}{-x} \dfrac{5x-2}{x} \dfrac{5x+2}{x} 5x^2-33x-14 (a+b)(c+d) a\cdot c 5x^2 b\cdot d -14 a\cdot d+b\cdot c -33x \qquad (5x+2)(x-7) x \qquad x^2-7x=x(x-7) \qquad \dfrac{(5x+2)(x-7)}{x(x-7)} x 0 x\neq\purple{7} x<6 \dfrac{5x+2}{x} x<6 h=61.41+2.32f h f 2003 160 (\text{cm}) f\le42.5 f\ge42.5 f<42.5 f>42.5 h=61.41+2.32f 160\,\text{cm} h>160 \qquad61.41+2.32f>160 61.41 \qquad2.32f>98.59 2.32 \qquad f>42.5 \qquad f>42.5 s annual membership and pay an additional per copy . The other is to pay per copy to represent the cents per copy times however many copies we make. If the first scenario begins with a one-time membership fee, the is added to c 0.05c xy y=-\dfrac{1}{4}(x-3)^2+2 (x,y) y = \dfrac{1}{2}(x+3)-7 (3,2) (-3,-7) (7,-2) (-1,-6) (3,2) (-1,-6) (7,-2) (-3,-7) y=\dfrac{1}{2}(x+3)-7 (-3,-7) y=-\dfrac{1}{4}(x-3)^2+2 (-3,-7) m=\dfrac{1}{2} y=\dfrac{1}{2}(x+3)-7 (7,-2) x y (-3,-7) (7,-2) y=-\sqrt{-x} y=\sqrt{x} 0 x 0 1 4 9 y 0 1 2 3 x -x y y=\sqrt{-x} \sqrt{-x} y x y=-\sqrt{-x} y=-\sqrt{-x} \qquad 8ix = -5 x i=\sqrt{-1} -\dfrac{8i}{5} \dfrac{8i}{5} -\dfrac{5i}{8} \dfrac{5i}{8} x i i^2=-1 \qquad x=\dfrac{5i}{8} 60 (\text{ft}) w\text{ ft} 200 \text{ft} 60+w=200 60+2w=200 120+w=200 120+2w=200 60\text{ ft} w\text{ ft} 2(60)+2(w) 200\text{ ft} \qquad2(60)+2(w)=200 \qquad 120+2w=200 120+2w=200 y = h(x) f(x)=\dfrac{1}{2}h\left(-\dfrac{x}{2}\right) f k \cdot f(x) k f(x) y k \; \dfrac{1}{2}h(x) h(x) y 2 f(k \cdot x) k f(x) x \dfrac{1}{k} \dfrac{1}{2}h \left( \dfrac{x}{2} \right) \dfrac{1}{2} h(x) x 2 f(- x) f(x) y \dfrac{1}{2}h \left(-\dfrac{x}{2} \right) \dfrac{1}{2} h \left( \dfrac{x}{2} \right) y \dfrac{1}{2} h \left( -\dfrac{x}{2} \right) 10 (\text{dB}) 1 2\,\text{dB} 26\,\text{dB} t 2t+10\ge26 2t+10>26 2(t-1)+10\ge26 2(t-1)+10>26 10\,\text{dB} 2\,\text{dB} t-1 2 t 2(t-1)+10 26\,\text{dB} (>) \qquad2(t-1)+10>26 \qquad2(t-1)+10>26 (x,y) (2,28) (1,14) (-2,-28) (-1,-14) (-7,-98) (7,98) y x x 14x=y y x^2+54=y+5 x \qquad\qquad\qquad x^2+49=14x x=7 x y x (7,98) (x_1,y_1) (x_2,y_2) x x_1\cdot x_2 x y (x,y) x x y y y_1=6 y_2=-5 x y x y_1=6 y_2=-5 (-4,6) (-7,-5) x x_1\cdot x_2 \qquad -4\cdot-7=28 xy (-2,2) y - 3 = 0 y + 2 = 0 x + 2 = 0 y - 2 = 0 x - 2 = 0 y - 3 = 0 y = 3 y xy y = k k (-2, 2) y 2 k 2 y = 2 y - 2 = 0 (\text{nA}) \left(\dfrac{\mu\text{mol}}{\text{L}}\right) 10 0 60 60 110 121 160 182 210 242 260 303 310 363 (\text{nA}) \left(\dfrac{\mu\text{mol}}{\text{L}}\right) 50\,\text{nA} 50\,\text{nA} 50\,\text{nA} 50\,\text{nA} 50\,\text{nA} \red{\text{common difference}} \blue{\text{common ratio}} \red{\text{linear}} \red{\text{common difference}} 50\,\text{nA} \blue{\text{exponential}} \blue{\text{common ratio}} \blue{\text{ratio}} 0 60 \red{\text{common difference}} 60.5\,\dfrac{\mu\text{mol}}{\text{L}} 50\,\text{nA} xy (0,15) (3, 2) (x-15)^2+y^2=178 (x-15)^2+y^2=\sqrt{178} x^2+(y-15)^2=178 x^2+(y-15)^2=\sqrt{178} (\green h,\purple k) \red r (x-\green h)^2+(y-\purple k)^2=\red r^2 \red{\sqrt{178}}=\red r (x-\green {0})^2+(y-\purple {15})^2=\red{\sqrt{178}}^2 x^2+(y- 15)^2=178 10 1\text{,}000 10 10 10 22 20 16.5 30 320 325 330 335 x x 1 20 x x \div 20 22.5 x \qquad 22 - \dfrac{x}{20} x \qquad 16.5 - \dfrac{x}{30} x 330 14h 18h h^2 \gray{\text{rational exponents}} y = p(x) y = w(x) 4 3 x y w(x) w(x) = p(x-3)+4 w(x) = p(x+3)+4 w(x) = p(x-3)-4 w(x) = p(x+3)-4 y = p(x) y = w(x) 4 3 y = w(x) y = p(x) 4 3 f(x) = g(x + a) + b y = f(x) y = g(x) a b a b 4 3 a = -3 b = -4 \qquad w(x) = p(x-3)-4 \qquad ax^2+5x+2=0 a x=-2 x=-\dfrac{1}{2} a -2 \ \ \ 2 \ \ \ 3 -3 ax^2+5x+2=0 x 0 ax^2+5x+2=0 x=-2 x=-\dfrac{1}{2} x 0 -2 x a a 4a-8=0 \red{2}x^2+5x+2=0 x=-2 x=-\dfrac{1}{2} a=2 \quad W = - \dfrac{1}{2}m+16 W m -\dfrac{1}{2} \dfrac{1}{2} 2 \dfrac{1}{2} \dfrac{1}{2} m W W m m W 0 16 1 15.5 2 15 3 14.5 4 14 \dfrac{1}{2} \dfrac{1}{2} \qquad\sqrt s+7=6+4\sqrt s \sqrt s s=\blue{\dfrac19} s=\dfrac{1}{9} \dfrac19 D T 0.5 60 1.0 82 2.0 127 3.0 172 3.5 195 T (^\circ \text{F}) D (\text{km}) D T D T D T T D T D T D T \Delta T 0.5 60 1 82 82-60 = 22 2 127 127-82=45 3 172 172-127 = 45 3.5 195 195-172 = 23 D 0.5 T 22.5 D 1 T 45 T T D T D D T \Delta T \Delta T / \Delta D 0.5 60 1 82 82-60 = 22 22/0.5 = 44 2 127 127-82=45 45/1 = 45 3 172 172-127 = 45 45/1 = 45 3.5 195 195-172 = 23 23/0.5 = 46 T D 45 D T T D -2a - b -5 -\dfrac13 \dfrac13 5 -2a-b a b b b a \qquad b = \dfrac{5}{2}a -1 b a (a, b) = \left( \dfrac{4}{3}, \dfrac{7}{3} \right) -2a-b \quad P = 21.25t + 525 1910 2010 P t 1910 525 525{,}000 1910 2010 525{,}000 1910 2010 2010 525{,}000 1910 525{,}000 t=0 P=525 t=0 1910 P 1910 525{,}000 1 11 12 23 2 10 11 21 3 6 12 18 4 23 4 27 50 39 89 4 \dfrac{4}{39} 2 \dfrac{21}{89} 1 \dfrac{12}{23} 2 \dfrac{2}{3} 1 \gray{11} 12 \red{23} 2 \purple{11} \green{21} 3 6 12 18 4 23 \pink4 27 50 \blue{39} 89 21 89 \blue{\text{analysis problems}} \purple{\text{chapter }2} \dfrac{\purple{11}}{\blue{39}} \dfrac{21}{89} 12 23 12 1 \red{\text{chapter }1} \gray{\text{skills problems}} \dfrac{\gray{11}}{\red{23}} \dfrac{12}{23} 2 3 \dfrac{12}{18} \dfrac{2}{3} \green{\text{chapter }2} \dfrac{2}{3} \blue{\text{analysis problems}} \pink{\text{chapter }4} {\dfrac{\pink4}{\blue{39}}} BC \overline{EB} \overline{DC} \angle BED \angle EBA \overline{EB} \overline{DC} \qquad\dfrac{7.5}{3}=\dfrac{10}{BC} BC \qquad BC=4 42 1000 \text { km}^2 8500 \text { km}^2 24 200 357 3035 42 1000 \text { km}^2 8500 \text { km}^2 357 357 8500 \text { km}^2 \qquad (2x+5)(mx+9)=0 m x=-\dfrac{5}{2} x=\dfrac{3}{2} m -2 \ \ \ 2 \ \ \ 3 -3 (2x+5)(mx+9)=0 m 2x+5 x=-\dfrac{5}{2} -\dfrac{9}{m} x=\dfrac{3}{2} \dfrac{3}{2} x x=-\dfrac{9}{m} m (2x+5)(\red{-6}x+9)=0 x=-\dfrac{5}{2} x=\dfrac{3}{2} m=-6 \qquad -2x^2+5x=17 b^2-4ac \qquad -2x^2+5x-17=0 0 \qquad2x-1=-1+a\,x a a 2 3 \qquad \blue a \,x+\red b=\blue c \, x + \red d \blue a\ne\blue c a 2 a=2 a=3 \qquad 2x-1=3x-1 x=0 a=3 f g g(f(5)) 3.5 5 7 9 f(5) f(5) 9 g(f(5)) = g(9) g(9) 7 g(f(5)) 7 7 16 (\text{cm}) 5\text{ cm} 4 21\text{ cm} 5\text{ cm} m 1.25m=5 1.25m=21 16+1.25m-21=5 5+1.25m-16=21 5\text{ cm} 4 5\div 4=1.25\text{ cm} 1.25m m 16\text{ cm} 16+1.25m m 21\text { cm} 16+1.25m-21 5\text { cm} \qquad 16+1.25m-21=5 16+1.25m-21=5 (\text{kW}) 1{,}000 (\text{W}) (\text{kWh}) 1\ \text{kW} 1 1\ \text{kWh} per kilowatt-hour, and a lightbulb rated at operates in that city for one hour every day for consecutive days. Which equation best models the cost in dollars, c=\dfrac{60}{1{,}000}\cdot 200\cdot 0.14 c=\dfrac{1{,}000}{60}\cdot 200\cdot 0.14 c=\dfrac{60}{1{,}000}\cdot \dfrac{200}{0.14} c=60\cdot1{,}000\cdot 200\cdot 0.14 60\ \text{W} 1{,}000\ \text{W} \dfrac{60}{1{,}000}\ \text{kW} 1 200 \dfrac{60}{1{,}000} \cdot 1 \cdot 200 =\dfrac{60}{1{,}000}\cdot 200 , the total cost c c=\dfrac{60}{1000}\cdot 200\cdot 0.14 mf (\text{m}) (\text{Hz}) 0.5\,\text{m} 0.\overline6\,\text{m} 0.1\overline6 0.5 0.\overline6 0.75 k f 0.75 0.5\,\text{m} 0.\overline6\,\text{m} \qquad i^{11} + i^{13} i=\sqrt{-1} -2i 2i 0 2 i^2=-1 \qquad-i + i = 0 \qquad 0 \qquad (x^2+h^2)(x^2-h^2) \qquad (1+m-p)x^4 -mp h m p b m \qquad\quad (x^2+h^2)(x^2-h^2) x 1 = 1+m-p \qquad\qquad \ \ \ \ x^4\text{ term equation} -h^4 = -mp\qquad\qquad\qquad\text{constant term equation} x^4 m m h^2 -h^2 h^2 DS S (\text{km/h}) D S S (30, 160) D = 30 D 30 30 \text{ km} 190\% 5 762 1 365 1.1 2.2 320 397 190\% 100\%+190\%=290\% 2.9 5 \qquad \red A\cdot\blue{2.9}^{\large{t}} \red A t \red{762} 1 2.2 y=\green mx+\red b \red b \green m \qquad\blue1(365)+\red{762}=1{,}127 1.1 \qquad2.2-1.1=1.1 1.1 (x,y) y>0 x x y (x,y) y y x x x x=6 x=8 y y y>0 y x y x=6 x=8 (6,-1) \left(8,\dfrac{1}{3}\right) x y>0 x=8 (r,s) r+s (r,s) r+s 6 r s \qquad r+s=\dfrac9{44}-\dfrac{15}{11}=-\dfrac{51}{44}<0 r+s -\dfrac{j^2}{2} -\dfrac{1}{2}j^2 -1 2\, \text{cm} 8 \, \text{cm} S x S=x^2+14x-16 S=2x^2+28x-32 S=16+2x-x^2 S=32+4x-2x^2 S \qquad S=2lw +2lh +2wh \qquad S=2(x)(x-2) +2(x)(8) +2(x-2)(8) \qquad S=2x^2+28x-32 3300 80 (\text{mph}) 5 290\,\text{mph} 338\,\text{mph} 370\,\text{mph} 450\,\text{mph} \qquad\text{distance}=\text{rate}\cdot\text{time} x x 5 \red{5x} x-80 5 \green{5\left(x-80\right)} 3300 \purple{3300} x \qquad \red{5x}+\green{5\left(x-80\right)}=\purple{3300} 370\,\text{mph} \qquad \left(v-\dfrac53\right)^2=49 v=-\dfrac{142}3 v=\dfrac{152}3 v=-44 v=54 v=-2 v=12 v=-\dfrac{16}3 v=\dfrac{26}3 v \qquad v=-\dfrac{16}3 v=\dfrac{26}3 \qquad q=9r^2+16s^2r^2 r q s r=\pm\dfrac{\sqrt{q}}{3+4s} r=\pm\sqrt{\dfrac{q}{9+16s^2}} r=\pm\sqrt{\dfrac{q}{25s^2}} r=\pm\dfrac{\sqrt{q-16s^2}}{3} g \green{\text{factor } r^2 \text{ from the expression }9r^2+16s^2r^2} r^2 \blue{\text{dividing by }9+16s^2} r \purple{\text{take the square root of both sides of the equation}} \sqrt[2]{x}=\sqrt{x} \qquad r=\pm\sqrt{\dfrac{q}{9+16s^2}} (\text{mi}) 500 1950 125 \, \text{mi} 50{,}000 1950 20 1950 1990 3.68 10 107.36 103.68 1950 \qquad \dfrac{50{,}000}{500} = 100 1990 40 1950 10 \, \dfrac{40}{10} = 4 125 1990 20 1.2 1990 1990 \qquad \dfrac{103{,}680}{1{,}000} = 103.68 1950 1990 \qquad 103.68 - 100 = 3.68 3.68 \qquad \left(x+\dfrac{13}2\right)\left(x-\dfrac{13}2\right)=0 0 1 2 3 \qquad \left(x+\dfrac{13}2\right)\left(x-\dfrac{13}2\right)=0 x=-\dfrac{13}2 x=\dfrac{13}2 2 15^\text{th} 135^\text{th} 56 n 56n+135=365 56(n-1)+135=365 56n-1+135=365 56(n+135)=365 365 135 n-1 56(n-1) n^\text{th} 135+56(n-1) n^\text{th} 1 135+56(1-1)=135+0=135 2 135+56(2-1)=135+56=191 3 135+56(3-1)=135+112=247 \qquad56(n-1)+135=365 \qquad56(n-1)+135=365 11^{\text{th}} \;\;\;\text{Class A Student Height Distribution in Inches} \;\;\;\text{Class B Student Height Distribution in Inches} \;\;\;\text{Class C Student Height Distribution in Inches} \;\;\;\text{Class D Student Height Distribution in Inches} \text{Class A, Class B,} \text{Class C} \text{Class D} \left(70\right) \text{Class D} \;\;\;\;\qquad \qquad\qquad\;\text{Class D Student Height Distribution in Inches} \overline{FH} 12 \overline{JK} 7 \angle FGH \theta \dfrac57 \approx \tan(0.62) \approx \cot(0.95) \approx \sin(0.80) \approx \cos(0.78) \theta 7 \overline{FH} 5 \overline{JK} \theta \theta 0.62 \dfrac{2}{3} 550 313 m m\geq53.\overline{6} m\ge158 m\ge303 m\ge366.\overline{6} 313 m 313+m \dfrac{2}{3} (\ge) \qquad 313+m\ge\left(\dfrac{2}{3}\right)550 \qquad313+m\ge366.\overline{6} 313 \qquad m\ge53.\overline{6} 53.\overline{6} ( 54) 10\:\text{dB} 0.0000632 \:\text{Pa} 20\:\text{dB} 0.0002 \:\text{Pa} 30\:\text{dB} 0.000632 \:\text{Pa} 40\:\text{dB} 0.002 \:\text{Pa} 50\:\text{dB} 0.00632 \:\text{Pa} 60\:\text{dB} 0.02 \:\text{Pa} 70\:\text{dB} 0.0632 \:\text{Pa} 80\:\text{dB} 0.2 \:\text{Pa} 90\:\text{dB} 0.632 \:\text{Pa} 100\:\text{dB} 2 \:\text{Pa} (\text{dB}) (\text{Pa}) ( \text{Pa}) 110\,\text{dB} 20 10 90 0.632 90+20 = 110 0.632 \cdot 10 = 6.32 \qquad 6.32 1.3 12^\text{th} 90^\circ 3.3 \text{mi} d 1.3 \text{ mi} 3.3 \text{ mi} 4.6 \text{ mi} 3.5468\ldots \text{ mi} \quad 4.6 - 3.5486\ldots = 1.05317\ldots 1.1 \text{ mi} \qquad \dfrac{x^2-16}{(x-3)(x+149)}\div \dfrac{(x+a)(a-x)}{x^2+cx-447}=-1 c-a 4 142 146 150 \qquad \dfrac{x^2-16}{(x-3)(x+149)}\cdot \dfrac{x^2+cx-447}{(x+a)(a-x)} -1 \qquad \dfrac{(x+4)(x-4)}{(x-3)(x+149)}\cdot \dfrac{x^2+cx-447}{-1(x+a)(x-a)} a=4 -1 c=146 c-a=146-4=142 \qquad (1+2i)+\dfrac{1}{9-i} i=\sqrt{-1} \dfrac{8+17i}{9-i} \dfrac{12+18i}{9-i} \dfrac{12+17i}{9-i} \dfrac{2+2i}{9-i} 50\% 15 8 10 23 30 x 50\% 1.5x \qquad 1.5x = 15 1.5 x = 10 10 108 \text{(kW)} 1.8 \text{ kW} 2.2 \text{ kW} . The rental company is charging for each speaker and 40 30 12 54 26 13 38 22 S L 1.8S+2.2L S L 75S+42L 108 \: \text{kW} and L y S x L S L \qquad L\leq-\dfrac{1.8}{2.2}S+\dfrac{108}{2.2} \qquad \qquad L\leq-\dfrac{75}{42}S+\dfrac{3{,}300}{42} \leq \qquad (26,13) \qquad 26 13 regular haircut and a deluxe haircut that includes a shave. On a certain day, the barber gave fewer deluxe haircuts than he did regular haircuts, , and earned 15.00h+20.00(h-3)=500.00 15.00h+20.00(h+3)=500.00 15.00(h-3)+20.00h=500.00 15.00(h+3)+20.00h=500.00 h 3 h-3 , and the price for a deluxe haircut is , we can use the expression 15.00h+20.00(h-3)=500.00 \qquad f(x)=3x^2+4x-2 g(x)=7x^2-bx+3 f(x)-g(x)=-4x^2+6x-5 x b -10 -2 2 10 f(x)-g(x) \qquad f(x)-g(x)=(3x^2+4x-2)-(7x^2-bx+3) f g g x (4+b) 4x+bx=(4+b)x f(x)-g(x) \qquad -4x^2+(4+b)x-5=-4x^2+6x-5 4+b=6 b=2 \qquad b=2 t 6.43 s 5.39 \dfrac st \approx \tan(0.697) \approx \sin(0.994) \approx \cos(0.576) \beta s t 3 s s \beta \dfrac\pi2 - \beta s t \tan\left(\dfrac\pi2 - \beta\right) \left(\dfrac\pi2 - \beta\right) t s \dfrac st \approx \tan(0.697) \beta 0.7 8=2^3 \left(a^m\right)^n=a^{mn} \dfrac{a^m}{a^n}=a^{m-n} a\neq 0 \qquad \qquad \qquad \qquad \qquad \text{Gas Prices in 2014} 2014 g 1 d 1 2014 1 12 2014 255^{\text{th}} t=255 g=3.50 is the best approximation for the price of gallon of gas on September , 8000 20 \qquad A = l \cdot w 20 \, \text{ft} l = w + 20 \qquad A = (w + 20)w = w^2 + 20w 2 w = -100 w = 80 80 \qquad(-1-5n+an^2)-(7n-4n^2+9)=12n^2-12n-10 n a 8 12 16 19 n^2 (4+a) an^2+4n^2=(a+4)n^2 \qquad (a+4)n^2-12n-10=12n^2-12n-10 a+4=12 a=8 \qquad a=8 \qquad A = P \left(1 + r \right)^t P r A t r = \dfrac{{\large\frac{A} {P}} - 1}{t} r = \dfrac{A - P - 1}{t} r = \left(\dfrac A P -1 \right)^{\Large \frac{1}{t}} r = \left(\dfrac A P \right)^{\Large \frac{1}{t}}-1 r \blue{\text{dividing both sides by } P} \purple{\text{raise both sides to the } \dfrac1 t \text{ power}} \pink{\text{subtract } 1} \qquad r = \left(\dfrac A P \right)^{\Large \frac{1}{t}}-1 \qquad f_D=\dfrac{343}{343-v}f v \left(\dfrac{\text{m}}{\text{s}}\right) f f_D 343\dfrac{\text{m}}{\text{s}} v v 2v f_D \qquad f_D(2v)=\dfrac{343}{343-2v}f f_D(v) f_D(v) 343-2v f_D(2v) f_D(v) 70\,\text{ milliliters (mL)} 1000\,\text{ mL} \text{mL} h f(h) = 930h f(h) = 1000h f(h) = 1000h - 70 f(h) = 1000 - 70h 1000 \,\text{mL} 1000 70h h 1000 \qquad f(h)=1000-70h f(h) = 1000 - 70h , and one pound of walnuts costs . Arturo can spend at most on almonds and walnuts. The graph at left, in the -plane, relates the number of pounds, , of walnuts to the number of pounds, 2 1 3 7 4 2 2 4 2 1 2 4 2 4 (2,3) (3,2) (2,4) (4,2) (2, 3) (4.2,2.2) (2,3) (4,2) (2,3) (2,3) (4,2) (4,2) (2,3) \quad P = 0.7c P c 3\% 7\% 30\% 70\% P=0.7c 0.7 0.7 70\% 70\% 70\% 30\% 100\% 30\% r \left(\dfrac{kH}{m^2}\right) 0^\circ 21^\text{st} m 21^\text{st} r 21^\text{st} 5 m=5 m=5 \qquad \qquad \sin(70^\circ) \approx 0.94 \cos(70^\circ) \approx 0.34 \tan(70^\circ) \approx 2.7 \angle ABC \angle BCD \overline{AB} 9.83 13.90 25.37 28.74 ABC BCD BC CD ABC 45^\circ-45^\circ-90^\circ B \overline{AB} \overline{BC} \qquad AB \approx 10 \overline{AB} 9.83 38^\circ w \sin(19^\circ) \approx 0.326 \tan(19^\circ) \approx 0.344 48\,\text{in} 38^\circ 38^\circ w 19^\circ 31\,\text{in} r 155^{\circ} \red{\text{vertical angle}} 50^{\circ} \blue{\text{interior angles of a triangle}} 180^{\circ} x \green{\text{supplementary angles}} 180^{\circ} \qquad r=125 \qquad V=C(1-r)^t V t C r t t \dfrac{V}{(1-r)^t} \red{\text{dividing by }C} t \left(x^a\right)^b=x^{a\cdot b} \blue{\text{subtract }1} \purple{\text{multiply by }-1} \qquad (3+i)(2-4i) i=\sqrt{-1} 2-10i 2-14i 10-10i 10-14i (3+i)(2-4i) i^2=-1 \qquad10-10i (p, q) 0 1 p 0 \qquad P(x)=(x+7)(x-10) x=-70 x=-3 x=1 x=-1 x=3 x=70 x=-7 x=10 x=-10 x=7 0 \qquad\green{(x+7)}\pink{(x-10)}=0 0 x x=\green{-7} x=\pink{10} y p 0 6 1 10 2 20 3 36 4 64 5 102 6 144 7 156 8 164 p y 6 c c p (y,p) = (0,11) c c 10 CI I C (C,I) = (400, 0) (C,I) = (2800, 1800) 400 2800 75 400 2800 25 400 2800 75 400 2800 25 0.75 400 < C < 2800 0 C < 400 C 400 0.75 C 2800 400 2800 75 400 2800 75 \qquad \qquad \qquad \text{Millions of international migrants,}\ (y) \qquad\qquad\qquad\qquad\qquad \text{Years since} \ 1990,\ (x) 1990 2013 y=144.99x+3.73 y=-144.99x+3.73 y=3.73x+144.99 y=-3.73x+144.99 \qquad y=mx+b y \qquad m=\dfrac{y_2-y_1}{x_2-x_1} (15,200) (23,230) \qquad\qquad\qquad \text{Millions of international migrants,}\ (y) \qquad\qquad\qquad\qquad\qquad \text{Years since} \ 1990,\ (x) (15,200) (23,230) \qquad \dfrac{230-200}{23-15}=\dfrac{30}{8}=3.75 y 145 \qquad y=3.73x+144.99 \qquad\qquad\qquad \text{Millions of international migrants,}\ (y) \qquad\qquad\qquad\qquad\qquad \text{Years since} \ 1990\ (x) \qquad y=3.73x+144.99 \qquad 2x^2-\dfrac{11}2x-\dfrac32=0 x=-\dfrac14 x=2 x=-\dfrac14 x=3 x=2 x=3 x=-\dfrac14 x=2 x=3 (2xa)(2x+b) 2xb+2xa 11 b=-3 a=1 x=-\dfrac14 x=3 \qquad x=-\dfrac14 x=3 \qquad \overline{BC} \overline{AD} (\text{cm}) \overline{BF} \text{cm} \overline{BC} \overline{AD} \red{\text{alternate interior angles}} \overline{FC} 70^\circ \qquad \overline{AD} 180 \blue r \qquad \Delta BCF \overline{BC} \overline{BF} \qquad BF=BC=10\text{ cm} 4 2 6\large\frac{1}{2} 2 4 5\large\frac{1}{2} 1 1 1 1\large\frac{1}{2} 2 2\large\frac{1}{2} x y 4 2 6\large\frac{1}{2} \qquad 2 x + 4 y = 6\large\frac{1}{2} 2 4 5\large\frac{1}{2} \qquad 4 x + 2 y = 5\large\frac{1}{2} x y x y x x y 1 1 2 \qquad 300 100 20 t c 240 100 360 180 240 260 120 180 t (t-100) c (c-20) 300 (0,420) (420,0) (80,0) (500,420) \qquad t=360 c=180 360 180 70\% 100 (\text{ml}) 90\% 70\% \text{ml} \qquad\purple{\text{volume of alcohol}}=\red{\%\text{ of alcohol}}\cdot\green{\text{volume of solution}} 90\% \qquad0.9(100)=90 \purple{90\,\text{ml}} w 100\,\text{ml} w \green{100+w} \red{70\%} \qquad\purple{90}=\red{0.7}\green{(100+w)} w 28.6\,\text{ml} 39\ \text{inches (in)} 78\ \text{inches (in)} H D R x B R \angle HRB \angle DRC B \overline{AC} 15\ \text{in} B x 7\ \text{in} 9\ \text{in} 11\ \text{in} 13\ \text{in} \triangle HRB \triangle DRC 180^\circ \triangle HRB \triangle DRC \triangle HRB \triangle DRC \triangle HRB \triangle DRC \qquad \dfrac{ \overline{DC} }{ \overline{RC} }=\dfrac{\overline{HB}}{\overline{BR}} B \overline{AC} \overline{BC}=39\ \text{in} \overline{RC}=39-x \overline{BR} \qquad \dfrac{39}{39-x} =\dfrac{ 15 }{ x } x \qquad 54\cdot x=585 x\approx11\ \text{in} 2:1 4:5 3:4 2:3 3:5 480\ \text{Hz} 800\ \text{Hz} 480:800 480:800=6:10=3:5 \qquad \dfrac{1}{4}(a-2)^2-10=50 a=2\pm4\sqrt{10} a=2\pm4\sqrt{15} a=-2\pm4\sqrt{10} a=-2\pm4\sqrt{15} Y=(a-2) \dfrac{1}{4}Y^2-10=50 Y Y^2 Y a (a-2) Y a-2=\pm4\sqrt{15} 2 a=2\pm4\sqrt{15} a=2\pm4\sqrt{15} \qquad|x-4|-x>3 x<\dfrac12 \dfrac127 2 -1 (1) x 4 3 x \pink{x} \blue{4} (2) 2 (1) \qquad\text{No solution} \quad \text{or} \quad x<\dfrac12 x \dfrac12 x \dfrac12 x<\dfrac12 a a a 0.8 a -0.8 a=0.8 a a \qquad g=255(100-m) g m m=25{,}500-g m=g-25{,}500 m=\dfrac{g}{255}-100 m=100-\dfrac{g}{255} \red{\text{dividing by }255} \blue{\text{subtract }100} \green{\text{multiply by }-1} \qquad m=100-\dfrac{g}{255} N(t) t \qquad N(t)=N_0\cdot(1-r)^{\large\text{ t}/\tau} N_0 t=0 r (04 0 1 {\ell^4n^5} \dfrac{1}{\ell^4n^5} 1 \,1 \dfrac x x 1 1x 1 \qquad\dfrac{1}{\purple{\ell \cdot \ell\cdot \ell\cdot \ell} \cdot \blue{ n\cdot n \cdot n \cdot n \cdot n }} \qquad \dfrac{1}{l^4n^5} 35 7 1.5 d 7d>35 7d\geq35 7d+3>35 7d+3d\geq35 \qquad 7\times\text{days worked} + 1.5\times2\times\text{days worked} \geq35 1.5\times2 = 3 3d \qquad 7d+3d\geq35 m \overline{AC} \overline{DB} 6\text{ cm} A D B \Delta ADB \overline{DB} \angle D \angle B \qquad m=71 |x|>8 \qquad\dfrac{\left(\dfrac{2x^2+4x}{x^3-5x^2+4x}\right)}{\left(\dfrac{4x^2-16}{x^2-6x+8}\right)} \dfrac{2}{x-1} \dfrac{1}{2(x-1)} \dfrac{2(x+2)}{(x-1)(x-2)} \dfrac{x+2}{2(x-1)(x-2)} \qquad\dfrac{2x^2+4x}{x^3-5x^2+4x}\div\dfrac{4x^2-16}{x^2-6x+8} \qquad \dfrac{2x(x+2)}{x(x-4)(x-1)} \div \dfrac{\red{4(x-2)(x+2)}}{\blue{(x-2)(x-4)}} \qquad \dfrac{2x(x+2)}{x(x-4)(x-1)} \cdot \dfrac{\blue{(x-2)(x-4)}}{\red{4(x-2)(x+2)}} x 0 x\neq{\green{-2},\pink{0},\purple2,\gray4} |x|>8 2 4 2 \qquad \dfrac{1}{2(x-1)} 1950 0.320 1960 0.612 1970 1.169 1980 ? 1990 4.393 2000 8.390 2010 16.03 7 1980 1.726 2.262 2.781 3.218 1980 1.169 \cdot 2 = 2.338 2.338 1980 2.262 \qquad (4y-9)^2-(3y+c)=16y^2-75y+73 y c -73 -8 8 73 (4y-9) 3y+c \qquad 16y^2-75y+(81-c) \qquad 16y^2-75y+(81-c)=16y^2-75y+73 81-c=73 c c=8 \qquad c=8 f f(c) = (c-k)(c^2-4c+4) k 2 f f(c) (c-2) 2 f (c-2) f(c) f(c) (c-2) 0 xy x=3 (4,5) \sqrt2 (3,3) (3,4) (3,5) (3,7) (\green h,\purple k) \red r \qquad (x-\green h)^2+(y-\purple k)^2=\red r^2 x=3 (\green 3,\purple k) \qquad (x-\green{3})^2+(y-\purple k)^2=(\red {\sqrt 2})^2 \qquad (x-3)^2+(y-\purple k)^2=2 (4,5) (x,y) \purple k \purple k \qquad (\purple k-4)(\purple k-6)=0 0 \qquad k=4 k=6 (3,4) (3,6) (3,4) (3,4) 4.5 (\text{in}) 1.25 (\text{in}) 6.0 (\text{m}) 1.07\ \text{m} 1.25\ \text{m} 1.67\ \text{m} 1.83\ \text{m} \left( 6\ \text{m}\right) \left(x \right) \left( 4.5\ \text{in}\right) \left( 1.25\ \text{in}\right) \quad \Large\frac{6}{x}=\Large\frac{4.5}{1.25} 1.67\ \text{m} x=\Large \frac{6\times1.25}{4.5}\approx1.67\ \text{m} 1.67 \text{ m} 406 452 2 436 390 400 410 420 x \qquad \dfrac{x}{100}=\dfrac{406}{452} x 89.8\% 2 91.8\% 91.8\% 436 y \qquad \dfrac{91.8}{100}=\dfrac{y}{436} y 400 400 (x,y) x \qquad\quad y x x \qquad\qquad\qquad 4x^2+x-29=x-4 x x x \dfrac{5}{2}\cdot-\dfrac{5}{2}=-\dfrac{25}{4} (x+6) (x+1) x^2+7x+6 x^2+6x+7 8x+6 7x+7 \qquad(x+6)(x+1) \qquad x\cdot x + x\cdot 1 + 6\cdot x + 6\cdot 1 \qquad x^2 + 1x + 6x + 6 \qquad x^2+7x+6 \qquad x^2+7x+6 24 \qquad\qquad \pi r^2h_\text{cylinder}=\dfrac13 \pi r^2h_\text{cone} 24\text{ cm} 24 h_\text{cone} \qquad\qquad \pi r^2h_\text{cylinder}=\dfrac13 \pi r^2\cdot24 \pi r^2 8 \quad C = 1.5b + 67.5 C b 1.5 1.5 when , we know that , we know that our cost increases by is the amount it costs to produce each book after the base cost of xy (0,0) (3,1) (-3,1) x^2+y^2+10y=0 x^2+y^2-10y=0 x^2-y^2-10y=20 x^2+y^2-5 y=0 (\green h,\purple k) \red r \qquad (x-\green h)^2+(y-\purple k)^2=\red r^2 (x,y) \green h \purple k \red r (0,0) \qquad (0-\green{h})^2+(0-\purple k)^2=\red r^2 (3,1) \qquad (3-\green h)^2+(1-\purple k)^2=\red r^2 (-3,1) \qquad (-3-\green h)^2+(1-\purple k)^2=\red r^2 \qquad (3-\green h)^2-(-3-\green h)^2=0 \qquad \purple k^2=\red r^2 \qquad 9 +(1-\purple k)^2=\red r^2 (0,5) (0,0) 5 \qquad x^2+(y-5)^2=25 \qquad x^2+y^2-10y+25=25 \qquad x^2+y^2-10y=0 \qquad x^2+y^2-10y=0 x = -\dfrac{1}{3}y y 0 y 0 (0,0) x x 1 y (-3)1 = -3 (1, -3) per hour, during which customers are allowed to pick as many apples as possible. If Yves can pick approximately apples in hour, and he picks 75 50 \dfrac{75}{50}=1.5 per hour, Yves can expect to pay k (0,3) (5,0) k 3 -\dfrac{3}{5} \dfrac{3}{5} -3 (5,0) x (0,3) x=0 y y=3 x=0 y=3 k k -\dfrac{3}{5} 5 \left(x^a\right)^b = x^{ab} n^{2\cdot3\cdot5} k^{2\cdot5\cdot7} \left(n^2k^{5}\right)^{3}=n^{2\cdot3}k^{5\cdot3}\quad n k k \left(n^{15}k^{35}\right)^2=n^{15\cdot2} k^{35\cdot2}=n^{3\cdot5\cdot2} k^{5\cdot7\cdot2}\quad \left(n^6k^{14}\right)^5 \qquad \left(n^{15}k^{35}\right)^2 \qquad \dfrac{5}{k-2} - \dfrac{2k-2}{k-1} = - 1 k \qquad (k-2)(k-1) \qquad 5k -5 +-2k^2 + 6k -4 = - k^2 + 3k - 2 \qquad k^2 - 8k +7 = 0 \qquad (k-7)(k-1) = 0 k 7 1 k = 7 k = 7 k = 1 0 k = 7 7 g(x)=x^2-5 f(g(x))=\sqrt{x^2+4} f(x) f(x)=\sqrt{x+1} f(x)=\sqrt{x+9} f(x)=\sqrt{x^2+1} f(x)=\sqrt{x^2+9} f f(x^2-5)=\sqrt{x^2+4} f(g(x))=\sqrt{x^2+4} f x^2-5 9 x^2-5 x^2+4 f(x)=\sqrt{x+9} f(x)=\sqrt{x+9} g(x)=x^2-5 f(g(x)) g(x) x f f(x)=\sqrt{x+9} 275 10 15 (\text{mins}) 15 10\text{ mins} 5 (\text{hrs}) 50\text { mins} 50 75 200 300 x 5\text{ hrs} 50\text { mins}, 350\text{ mins} 350-x\text{ mins} 10\text{ pages} 15\text{ mins} 350-x \dfrac{10}{15}(350-x) 15\text{ pages} 10\text{ mins} x\text { mins} \dfrac{15}{10}x 275 50\text{ mins} \left(\dfrac{15\text{ pages}}{10\text{ mins}}\right) \dfrac{15}{10}\cdot 50 75 75 \qquad\dfrac{ \left( \dfrac{3x^2-2x-5}{x^2+x} \right) }{ \left( \dfrac{15-9x}{3x} \right) } x<-2 1 -1 \dfrac{(3x-5)(5-3x)}{x^2} -\dfrac{x-1}{x+1} \qquad \dfrac{3x^2-2x-5}{x^2+x} \cdot \dfrac{3x}{15-9x} 5-3x=\red{-1}(3x-5) \qquad \dfrac{(3x-5)(x+1)}{x(x+1)} \cdot \dfrac{3x}{(\red{-1})(3)(3x-5)} 5-3x=\red{-1}(3x-5) x 0 x\neq{\green{-1},\pink{ \dfrac53},\blue0} x<-2 \qquad -1 \qquad \left(5-7i+i^2\right)+\left(8i^3+12\right) a+bi a b a i=\sqrt{-1} 16 17 18 19 i i \sqrt{-1} i^2 -1 i^3 -\sqrt{-1}=-i i^4 1 \qquad (5-7i+\red{i^2})+(8\blue{i^3}+12)=(5-7i+\red{(-1)})+(8\blue{(-i)}+12) a+bi \qquad a=16 \qquad 1.75I - 0.75P = B P I B 1.75 1.75 B 2 1.75I \qquad\qquad a^2 = b^2+c^2 a b c c a b c = a-b c = \sqrt{a^2}-b^2 c = \sqrt{a^2-b^2} c = \sqrt{a^2+b^2} c^2 \blue{\text{subtracting } b^2 \text{ from both sides of the equation}} c \purple{\text{take the square root of both sides of the equation}} \sqrt[2]{x}=\sqrt{x} \qquad c = \sqrt{a^2-b^2} 5\% 5\% 4\% 4\% is invested in the bank and is invested with the stockbroker, after 5\% 5\% 4 4\% 4\% 4 t 0.41 2.5 0.8 0.4 20\% 2.5 20\% 0.4 y=\red{a}\cdot \blue{b}^{\large\purple{x}} \red a \blue b \purple x 1 \blue b <1 \purple{\dfrac{2t}{5}} 1 \blue{0.8} \blue{80\%} 20\% t=0 \red{0.41} \blue{0.8} \purple{\dfrac{2t}{5}}=1 20\% 2.5 f \dfrac{2}{3} t f t = 3 t = 3 - \dfrac{1}{3}f t = 3 + \dfrac{2}{3}f t = 3 + f f f 9 \dfrac{2}{3} \qquad\dfrac{2}{3}(9-f) \qquad 9 -f- \dfrac{2}{3}(9-f) \qquad9 - f-6 + \dfrac{2}{3}f = 3 - \dfrac{1}{3}f \qquad t=3-\dfrac13 f \qquad t = 3- \dfrac{1}{3}f xy (-41,69) (31,-85) (x+41)^2+(y-69)^2=28900 (x+5)^2+(y+8)^2=7225 (x-31)^2+(y+85)^2=28900 (x+10)^2+(y+16)^2=7225 (\green h,\purple k) \red r \qquad(x-\green h)^2+(y-\purple k)^2=\red r^2 \green h x \qquad \green h=\dfrac{-41+31}{2}=\green{-5} \purple k y \qquad \purple k=\dfrac{69+(-85)}{2}=\purple{-8} \qquad\sqrt{28900}=170 170 \red{85} \qquad(x-(\green {-5}))^2+(y-(\purple {-8}))^2= \red{ 85}^2 \qquad(x+5)^2+(y+8)^2=7225 per pound and peanuts cost per pound. The owner wants to create pounds of the product that cost per pound. Which of the following systems of equations can be used to determine the number of pounds of peanuts, , and the number of pounds of raisins, \qquad p + r = 20 \qquad 2.50p + 3.50r 20 \qquad\dfrac{2.50p+3.50r}{20} 19 20 59 60 \qquad\dfrac{x^2+6x-27}{9-x^2} x<0 -\dfrac{x+9}{3+x} -\dfrac{x-9}{x-3} \dfrac{x+9}{3+x} 6x-3 (x+9)(x-3) 9-x^2 \qquad (3-x)(3+x) \qquad \dfrac{(x+9)(x-3)}{(3+x)(3-x)} 3-x=\red{-1}(x-3) x 0 x\neq\purple3 x<0 -\dfrac{x+9}{3+x} x<0 23 60 13 60 h 10 13-\dfrac{23h}{60}=10 13-\dfrac{60h}{23}=10 \dfrac{13-60h}{23}=10 \dfrac{13-23h}{60}=10 \qquad \dfrac{\small{\text{[Miles per hour]}\cdot \text{[Num. of hours driven]}}}{[ \text{ Miles per gallon}]}=\text{[Gallons used]} 60 h 23 \dfrac{60h}{23} 1 60\cdot 1=60 \dfrac{60}{23}\approx2.6 13 10 h \qquad\qquad 13-\dfrac{60h}{23}=10 13-\dfrac{60h}{23}=10 8 60 5280 1 90\ \text{ft} 700\ \text{ft} 750\ \text{ft} 800\ \text{ft} 60 8 88\times8=704\ \text{ft} \approx 700\ \text{ft} \qquad (6x+5)-(12-4x^2) 4x^2+6x-7 -4x^2+6x-7 24x^3+20x^2-72x-60 -24x^3-20x^2+72x+60 \qquad 4x^2+6x-7 \qquad 4x^2+6x-7 18^\circ 36 \text{(ft)} y 11 \text{ ft} 5 5 5 5 5 5 5 5 5 5 2004 28\% 2006 34\% 2008 43\% 2010 56\% 2012 78\% 13\% 13\% 2 40\% 40\% 2 2 2 2 2004 28\% 2006 34\% 6\% 2008 43\% 11\% 2010 56\% 13\% 2012 78\% 22\% 2 2004 28\% 2006 34\% \approx 1.21 2008 43\% \approx 1.26 2010 56\% \approx 1.30 2012 78\% \approx 1.69 2 1.4 1.4 40\% 2 (j,k) 0 1 2 y \left(\dfrac{3}{22}\text{ and} \,\dfrac{16}{22}\right) \qquad A = \dfrac 1 2 (b_1 + b_2) h A h b_1 b_2 2 h = \dfrac A 2 (b_1 + b_2) h = \dfrac{2}{A(b_1+b_2)} h = \dfrac{A}{2(b_1+b_2)} h = \dfrac{2A}{(b_1+b_2)} \purple{\text{multiply both sides by } 2} \dfrac 1 2 \pink{\text{divide both sides by } (b_1 + b_2)} \qquad h = \dfrac{2A}{(b_1+b_2)} \qquad T = -110 + 0.13x(21 - x) x T x = 0 \qquad -110 + 0.13(0)(21-0) = -110 + 0(21) = -110 x -110 x = 0 x = 21 21 - 0= 21 21 y=-2(x-1)^2+5 y=a(x-h)^2+k (h,k) y=-2(x-1)^2+5 (1,5) a<0 \left((0,3), (2, 3), (3,-3)\right) \qquad 2x+y=3 y=-2x+3 -2 y (0,-3) \qquad 8v 6t 4v 3t a=(yt)^{3t} b=(lv)^{4v} \qquad a^2-b^2 = (a+b)(a-b) \qquad m(t_2) - m(t_1) = 15(t_2 - t_1) 4^\circ m(t) (\text{g}) t t_1 t_2 t t_1 < t_2 15 \, \text{g} 1 \, \text{g} 15 15 15 \qquad \dfrac{m(t_2) - m(t_1)}{t_2-t_1} = 15 t_1 t_2 t_1 t_2 m t 15 m t 15 m t 15 \, \text{g} 15 \, \text{g} t \qquad h(t)=-4.9t^2+19.6t -4.9(t-2)^2+19.6 -4.9(t-3)^2-9.8t+44.1 -4.9(t-1)^2+9.8t+4.9 \qquad h(t)=-4.9t^2+19.6t=-4.9t(t-4) h(t)=0 t=0 t=4 0\leq t\leq 4 4 \overline{TR} 12 \sin(r^\circ) \approx 0.927 \cos(r^\circ) \approx 0.375 \tan(r^\circ) \approx 2.472 \overline{RS} 4.9 12.9 29.7 32.0 QTR 12 QR SQR QR \dfrac{12}{\sin(r^\circ)} \tan RS \overline{RS} f(x)=\sqrt{x+3}-4 g(x)=\sqrt{x+3}+b xy b f g h(x)=\sqrt{x} 0 x 0 1 4 9 y 0 1 2 3 g h 3 5 h(x) \rightarrow h(x+3) h 3 h(x+3)\rightarrow h(x+3)+5 5 g g(x)=\sqrt{x+3}+5 g(x)=\sqrt{x+3}+b b=5 \qquad b=5 \qquad \dfrac{P_1V_1}{T_1} = \dfrac{P_2V_2}{T_2} P V T (1) (2) V_1 = V_2 V_2 = \dfrac{P_1 T_2 V_1}{ ({T_1}/{P_2})} V_2 = \dfrac{P_1 T_2 V_1}{P_2 T_1} V_2 = \dfrac{P_1 V_1}{ {T_1}} - \dfrac {T_2}{P_2} \blue{\text{multiply both sides by } T_2} \, \pink{\text{divide both sides by } P_2} \qquad V_2 = \dfrac{P_1 T_2 V_1}{P_2 T_1} 3(r+300)=6 r+300-2 (r+300) 3 0 k k (p, q) -2 0 2 q k k = 0 0 k \dfrac{2}{3} p k 0 k q -\dfrac{2}{5} = -\dfrac{2}{5} k = -2 k \qquad \sqrt{\ell(\ell-5)}=6 \ell 0 \ell=9 \ell=-4 \ell=\blue9 \ell=9 \ell= \blue{-4} \ell=9 \ell=-4 9+(-4)=5 5 4 79\% h b h = 4 \cdot 0.79^{(b-1)} h = 4 \cdot 0.79^b h = 4 - 0.79 \cdot b^2 h = 4 \cdot ( 1- 0.21 \cdot b^2 ) 4 b=0 h=4 79\% 4 b=1 h = 4 \cdot 0.79 79\% 4\cdot0.79 b=2 h=4\cdot0.79\cdot0.79 h=4\cdot0.79^2 \qquad h = 4 \cdot 0.79^b xy -3 5 -6\le x\le6 \text{I} \text{I} \text{II} \text{II} \text{III} \text{I} \text{II} \text{III} 0 0 x x x -3 5 \text{I} x -3 5 \text{II} x -3 5 \text{III} x 5 -3 \text{I} \text{II} \qquad w = 3 +2.3t 3 w t 2.3 3 1 2.3 2000 9 5 21 \% 6\% x 15 \qquad\dfrac{9}{21}=\dfrac{15}{x} x=35 35 15 1 5 1 \qquad \dfrac{2.25 \text{ euros}}{1\text{ box}}\cdot \dfrac{1 \text{ box}}{5\text{ servings}} 0.45 1 \qquad 0.45x=0.55 x x\approx 1.22 35 15 1 y=3x+33 (x,y) y =-3(x+10)^2+9 (-11,0) (-8,9) (-12,-3) (-13,-6) y =-3(x+10)^2+9 (-10,9) U 3 (-12,-3) (-12,-3) (-12,-3) \qquad \qquad \text{World Population Aged 80 and Over: 1950 - 2050} 80 1950 2050 t 1950 n 80 80 2030 18 38 180 380 t 1950 2030 t=80 t=80 n=180 2030 180 80 180 80 2030 s=a\cdot a\cdot a\cdot a s=(a-1)(a-1) s=a\cdot a\cdot a\cdot a\cdot a s=(a-1)(a-1)(a-1) a=0 a \qquad s=a\cdot a\cdot a\cdot a \qquad \qquad s=a\cdot a\cdot a\cdot a\cdot a a s=a\cdot a\cdot a\cdot a=a^4 a s 0 s=a\cdot a\cdot a\cdot a\cdot a=a^5 a s a s=a\cdot a\cdot a\cdot a\cdot a , and the median price for non-musical plays is on e-books and paperback books combined. Each e-book he buys costs , and each paperback book he buys costs . If Hiroto buys e-books and 5x+12y=68 12x+5y=68 17(x+y)=68 17xy=68 [\text{cost per book}]\cdot [\text{number of books}]=[\text{total cost for books}] 12x 5y 5x+12y=68 10 x \qquad x = y^2 - 4y + 5 y \qquad x = a(y-y_0)^2+x_0 a (x_0,y_0) x a 1 x x_0 = 1 1 per page, plus a setup fee. The cost of printing the manuscript at a photocopy store is 140 175 230 350 \qquad 350 (x, y) y (x, y) y (x, y) (x, y) y y \qquad 2x - 1 = (3x - 1) x x x x y y (x, y) y 6 5 30 36 60 72 60 (\text{min}) 1 30 6 (\text{mi}) 5 \qquad \dfrac{6\text{ mi}}{5\text{ min}}=\dfrac{m\text{ mi}}{30\text{ min}} m 36 \qquad \dfrac{1.6xy^2 + 0.8y}{0.4xy} y>6 x>8 \dfrac{3y}{5} \dfrac{2xy+1}{4x} \dfrac{4xy+2}{x} {4y+2} \qquad \dfrac{1.6xy^2 + 0.8y}{0.4xy} \quad = \quad \dfrac{0.4y(4xy + 2)}{0.4y(x)} \qquad \dfrac{4xy+2}{x} 3 6 m 6m+6\left(2m\right)=3 6m+6\left(\dfrac{m}{2}\right)=3 6m+6\left(2m\right)=180 6m+6\left(\dfrac{m}{2}\right)=180 6 m \red{6m} 6 \dfrac{m}{2} \green{6\left(\dfrac{m}{2}\right)} 6 \red{6m}+\green{6\left(\dfrac{m}{2}\right)} 3 60 =1 \purple{180} \qquad\red{6m}+\green{6\left(\dfrac{m}{2}\right)}=\purple{180} \qquad{6m}+{6\left(\dfrac{m}{2}\right)}={180} \qquad N = 2 \cdot 3^t N t 2 3 2 3 t N 2 3 3 2 1 2 2 (\text{GR} ) (M) (N) \,N = 10^{a - b M} N \geq M a b 10^a 2f \dfrac f2 111{,}000 \pi \left(\text{m}^3\right) \sqrt[3]{83{,}250} \sqrt[3]{166{,}500} 2 \sqrt[3]{83{,}250} 2 \sqrt[3]{166{,}500} \qquad V = \dfrac{4}{3} \pi r^3 V r \qquad V_\text{hemisphere} = \dfrac{2}{3}\pi r^3 r r d = 2 \sqrt[3]{166{,}500} 2 \sqrt[3]{166{,}500} \text{ m} 1280\,\text{m} \qquad h(x)=0.000371(x^2-1280x)+152 x \qquad 640\,\text{m} 152\,\text{m} 0.000371\,\text{m} 1280\,\text{m} y x=0 \qquad h(0)=0.000371(0)^2-1280(0)+152 152\,\text{m} 5 6 11 2 10 12 6 11 17 13 27 40 40 65\% 68\% 65\% 83\% 65\% 68\% 65\% 83\% \red{\text{proportion of trips from Route C that were late}} \blue{\text{proportion of all trips that were late}} 5 6 11 2 10 12 6 \red{11} \red{17} 13 \blue{27} \blue{40} \red{\text{proportion of trips from Route C that were late}} 11 17 \blue{\text{proportion of all trips that were late}} 27 40 \red{0.65} \red{65\%} =\blue{0.68} \blue{68\%} (\red{65\%} < \blue{68\%}) \purple{\text{proportion of late trips that were from Route C}} \green{\text{proportion of all trips that were from Route C}} 5 6 11 2 10 12 6 \purple{11} \green{17} 13 \purple{27} \green{40} \purple{\text{proportion of late trips that were from Route C}} 11 27 \green{\text{proportion of all trips from Route C}} \purple{0.41} \purple{41\%} \green{0.43} \green{43\%} \purple{\text{proportion of late trips from Route C}} \green{\text{proportion of all trips from Route C}} 65\% 68\% \qquad\qquad\text{U.S. annual per capita hfcs consumption in pounds, } (y) \qquad\qquad\qquad\qquad \text{Years since 1970, } (x) (\text{hfcs}) 1970 1985 y=0.201x^2-0.264x+0.969 y=-0.201x^2-0.264x+0.969 y=201.00x^2-264.00x+969.00 y=-201.00x^2-264.00x+969.00 \qquad y=-0.201x^2-0.264x+0.969 \qquad y=-201.00x^2-264.00x+969.00 \qquad y=201.00x^2-264.00x+969.00 \qquad y=0.201x^2-0.264x+0.969 (0,0) y 0 y (969.00) y=201.00x^2-264.00x+969.00 y=0.201x^2-0.264x+0.969 y 0.969 \qquad y=0.201x^2-0.264x+0.969 \qquad\qquad\text{U.S. annual per capita hfcs consumption in pounds, } (y) \qquad\qquad\qquad\qquad \text{Years since 1970, } (x) \qquad y=0.201x^2-0.264x+0.969 y=-(x+2)^3 y=x^3 x -2 -1 0 1 2 y -8 -1 0 1 8 f(x)=x^3 f(x)\rightarrow f(x+2) f(x+2)\rightarrow -f(x+2) x y=x^3 y=-(x+2)^3 y=-(x+2)^3 450 6 11 s 11s + 6>450 11s + 6<450 6s + 11>450 6s + 11<450 \qquad \text{students traveling by bus} + \text{students traveling by car} >450 6 11 s 11s \qquad 11s + 6>450 \qquad r = 9.4t r t 9.4 9.4 9.4 9.4 9.4 \blue{\text{units}} 9.4 9.4 x (-3,0) (7,0) x=h h x x 7 -3 x=2 \qquad h=2 9 (\text{ft}) 3\,\text{ft} \ell d \ell=d+3 15\,\text{ft} -20 <8x+10<-8 4x+5 -4 -10 -10 -4 -\dfrac{9}{4} -\dfrac{15}{4} -\dfrac{15}{4} -\dfrac{9}{4} -20 <8x+10<-8 4x+5 4x+5=\dfrac{8x+10}{2} 4x+5=\dfrac{8x+10}{2} 4x+5 2 aa x a b x<2 x>5 50 a x y (a,b) y x \qquad x = \dfrac{-b\pm\sqrt{b^2-4ac} }{2a} ax^2+bx+c=0 (a,b) a>0 a x a=\dfrac{3}{7} \qquad y - \sqrt{7y-31} = 3 -13 -3 3 13 \qquad (y-5)(y-8) = 0 \qquad y = 5 \qquad y = 8 y = 5 y=5 y = 8 y=8 5 8 \qquad 5 + 8 = 13 1080 720 10.2 5.66\,\text{cm} 6.8\,\text{cm} 8.49\,\text{cm} 15.3\,\text{cm} 1080 720 (\text{px}) d d 1298\,\text{px} \ell 5.66\,\text{cm} xy (4,13) (x+6)^2+(y-10)^2=397 (x-10)^2+(y-6)^2=1{,}588 (x-10)^2+(y+6)^2=1{,}588 (x-10)^2+(y+6)^2=397 (\green h,\purple k) \red r \qquad(x-\green h)^2+(y-\purple k)^2=\red r^2 \green h x \qquad \green h=\dfrac{16+4}{2}=\green{10} \purple k y \qquad \purple k=\dfrac{-25+13}{2}=\purple{-6} (\green{10},\purple{-6}) d \qquad (x-10)^2+(y+6)^2=397 xy (-23,15) (1,-55) (x+23)^2+(y-15)^2=1369 (x+23)^2+(y-15)^2=5476 (x+11)^2+(y+20)^2=1369 (x+11)^2+(y+20)^2=5476 (\green h,\purple k) \red r \qquad(x-\green h)^2+(y-\purple k)^2=\red r^2 \green h x \qquad \green h=\dfrac{-23+1}{2}=\green{-11} \purple k y \qquad \purple k=\dfrac{15+(-55)}{2}=\purple{-20} \qquad\sqrt{5476}=74 74 \red{37} \qquad(x-\green {(-11)})^2+(y-\purple {(-20)})^2=\red {37}^2 \qquad(x+11)^2+(y+20)^2=1369 60 (\text{dB}) 0 (\text{m}) 30 \, \text{dB} 0 \, \text{m} 8 60 3 3 30 3 3 \qquad 7.5 - 6 = 1.5 \qquad at^2+\dfrac72t-4=0 t=-8 t=1 a -1 -\dfrac{1}{4} \dfrac{1}{2} 1 t=1 a \dfrac12 \qquad-81x^2=-11 x= \dfrac{\sqrt{11}}{81} x=-\dfrac{\sqrt{11}}{81} x=\dfrac{\sqrt{11}}{81} x=-\dfrac{\sqrt{11}}{9} x=\dfrac{\sqrt{11}}{9} x=\dfrac{\sqrt{11}}{9} -81x^2=-11 ax^2=c a c x x^2 81x^2-11 0 x^2 x=-\dfrac{\sqrt{11}}{9} x=\dfrac{\sqrt{11}}{9} \qquad 7.99C + 9.50M = S S C M S 7.99C 9.50M M M \blue{\text{units}} 9.50M \qquad \dfrac12x^2-\dfrac16x-\dfrac13=0 x=1 x=-\dfrac23 x=\dfrac16-\sqrt{\dfrac{23}{36}} x=\dfrac16+\sqrt{\dfrac{23}{36}} x=2 x=-\dfrac43 x=\dfrac16-\sqrt{-\dfrac{23}{36}} x=\dfrac16+\sqrt{-\dfrac{23}{36}} a b ab=-2 3xb+1xa=-1x 3b+a=-1 a=2 b=-1 1 -\dfrac23 0 0 x=1 x=-\dfrac23 15\% m f(m) = 0.15m f(m) = 0.85m f(m) = 1 - 0.15m f(m) = 1 - 0.85m 15\% 85\% m \qquad f(m) = 0.85m f(m)=0.85m (a,b) a\cdot b -\dfrac{1{,}276}{243} \dfrac{29}{9} \dfrac{44}{27} \dfrac{1{,}276}{243} a b a b a=\dfrac13\left(\dfrac{29}{9}\right)+\dfrac59=\dfrac{44}{27} a\cdot b=\left(\dfrac{44}{27}\right)\left(\dfrac{29}{9}\right)=\dfrac{1{,}276}{243}. \qquad a\cdot b=\dfrac{1{,}276}{243} \alpha \alpha {\large\ell}:s \sin(\alpha) : 1 1 : \cos(\alpha) \sin(\alpha)^2 : 1 1: \cos(\alpha)^2 \alpha d {\large\ell} \alpha d s \alpha {\large\ell}:s {\large\ell} {\large\ell} \qquad C = 0.4m + 68 m C 0.4m 0.4m 0.4m 0.4m 0.4m C 2 0.4m 68 term gets larger or smaller as the mileage increases or decreases, and it is a portion of the total cost 0.4m 120^\circ 2\dfrac12\,\text{in} 2\dfrac78\,\text{in} 4\dfrac13\,\text{in} 8\dfrac23\,\text{in} 120^\circ h \qquad 2\cdot 4.33= 8.66 8\dfrac23\,\text{in} \qquad\qquad \angle {MLN} \angle {MLN} \theta \theta \qquad\qquad \sin\theta=\dfrac{\red{\text{Length of the side opposite from }\theta}}{\blue{\text{Length of the triangle's hypotenuse}}} MLN \angle{MLN} \red{\text{{opposite}}} \angle{MLN} \red {10\sqrt3} \blue{\text{{hypotenuse}}} MLN \blue{10\sqrt6} \qquad\qquad \sin\theta=\dfrac{\red{10\sqrt3}}{\blue{10\sqrt6}} 0^\circ<\theta<90^\circ \sin45^\circ \dfrac{\sqrt2}{2} \theta=45^\circ \angle{MLN} 45^\circ f(x)=8\left(\dfrac{2}{5}\right)^x g(x)=8(b)^x xy b f g y f(x)=8\left(\dfrac{2}{5}\right)^x x -x y b=\dfrac{5}{2} g(x)=8(b)^x x \qquad b=\dfrac{5}{2} ( =0) 8 50\% 2 6 6^{\text{th}} 17 45 71 135 6 8 8+6y y \qquad 8+6(6)=44 6 44 50\% 2 2 150\% 1.5 2 1.5 0 8 2 8(1.5) 4 8(1.5)(1.5)=8\cdot1.5^2 6 8(1.5)(1.5)(1.5)=8\cdot1.5^3=27 6 27 \qquad44+27=71 71 6^{\text{th}} 1.2^\circ 5 \sin(1.2^\circ) \approx 0.02094 \cos(1.2^\circ) \approx 0.99978 1.26 60.01 165.58 238.75 \qquad \cos(\theta^\circ)=\dfrac{\text{length of adjacent side}}{\text{length of hypotenuse}} d 12 \qquad5.001(12)=60.012 60.01 ( 1.00) \text{pH} 4 \text{pH} 0.5 \text{pH} 4 \text{pH} 0.10 \text{pH} 0.40 2 6 3.75 4.25 0 8 3.20 4.80 \text{pH} 4\,\text{pH} \qquad |\text{pH}-4| \qquad \dfrac{0.10}{0.5}|\text{pH}-4|=0.2|\text{pH}-4| 0.40 \text{pH} \qquad \text{pH}=2 \text{pH}=6 \qquad \text{pH}=2 \text{pH}=6 . Out-of-pocket expenses include any deductibles and coinsurance that the client pays beyond the normal monthly premium. The client has a deductible of . This means that the client has to pay all of the first of expenses insured by the policy. After that, the client has a co-insurance, meaning the client pays of the insured expenses and the insurance company pays the remainder. Which inequality represents how much the total insured expenses, x<26{,}000 x<25{,}000 x<24{,}000 x<23{,}750 20\% . We can represent this with . The deductible is a flat rate of . This means that the total the client pays will be equal to or less than 250 \qquad0.2(x-250)<4750 0.2 \qquad x-250<23{,}750 250 \qquad x<24{,}000 y=-36x^2-50 (x,y) y =120x+50 \left(\dfrac{2}{3},-70\right) \left(-\dfrac{4}{3},-110\right) \left(-\dfrac{5}{3},-150\right) \left(\dfrac{4}{3},-114\right) y=120x+50 y (0,50) m=120 (-1,-70) (-2,-190) x=-1 x=-2.5 \left(-\dfrac{4}{3},-110\right) \left(-\dfrac{5}{3},-150\right) \left(-\dfrac{4}{3},-110\right) x=-\dfrac{4}{3} y=-110 \left(-\dfrac{4}{3},-110\right) \left(-\dfrac{5}{3},-150\right) x=-\dfrac{5}{3} y=-150 x y \left(-\dfrac{5}{3},-150\right) x 8\sqrt3 16 16\sqrt2 32 ABC \overline{BC} \overline{BC} y \theta \qquad\qquad \tan\theta=\dfrac{\red{\text{Length of the side opposite from }\theta}}{\blue{\text{Length of the side adjacent to }\theta}} ABC \angle B=30^\circ \red{\overline{AC}} \red{\text{{opposite}}} \angle B \red{4} \blue{\overline{BC}} \blue{\text{{adjacent}}} \angle B \blue{y} \qquad\qquad \tan30^\circ=\dfrac{\red{4}}{\blue{y}} \tan30^\circ \dfrac{\sqrt3}{3} x \overline{BD} \angle B BCD \theta \qquad\qquad \cos\theta=\dfrac{\blue{\text{Length of the side adjacent to }\theta}}{\green{\text{Length of the triangle's hypotenuse }}} BCD \angle B=30^\circ \blue{\overline{BD}} \blue{\text{{adjacent}}} \angle B \blue{x} \green{\overline{BC}} \green{\text{{hypotenuse}}} BCD \green{\dfrac{12}{\sqrt3}} \qquad\qquad \cos30^\circ=\dfrac{\blue{x}}{\left(\green{\dfrac{12}{\sqrt3}}\right)} \cos30^\circ \dfrac{\sqrt3}{2} x 6 xy (x-10)^2+(y-60)^2=841 x -10 y x y y-60=21 60 y=81 y-60=-21 60 y=39 y 39 81 16 1 4 4 2^\text{nd} 3^\text{rd} 4^\text{th} 5^\text{th} m p 1m m 4m p \qquad 16+m=4+4m m \qquad 16 = 4 + 3m 4 \qquad 12=3m 3 \qquad m=4 Y v 1995 88 1996 132 1997 198 1998 297 1999 446 v A B Y 44 \% 50 \% 44 50 v Y v \Delta v 1995 88 1996 132 132-88=44 1997 198 198-132=66 1998 297 297-198=99 1999 446 446-297=149 Y v \Delta v \Delta v / v_i 1995 88 1996 132 44 44/88=0.5 1997 198 66 66/132=0.5 1998 297 99 99/198=0.5 1999 446 149 149/297 \approx 0.5 50 \% 50 \% \qquad \dfrac{ 4\ell^2 + 4\ell - 3}{ 2\ell^2 - 7\ell - 15} \ell > 6 \dfrac{3}{20} -\dfrac{3}{20} \dfrac{2\ell + 1}{\ell + 5} \dfrac{2\ell - 1}{\ell - 5} \dfrac{ \pink{ 4\ell^2 + 4\ell - 3}}{ 2\ell^2 - 7\ell - 15} \dfrac{ { 4\ell^2 + 4\ell - 3}}{ \purple{2\ell^2 - 7\ell - 15}} 1 \,\ell \,0 \ell>6 \qquad \dfrac{2\ell - 1}{\ell - 5} l h \, \dfrac{\sqrt{6}}{3} l l \dfrac{\sqrt{2}}{12} l^3 \dfrac{\sqrt{3}}{12} l^3 \dfrac{\sqrt{2}}{4} l^3 \dfrac{\sqrt{3}}{4} l^3 \qquad V = \dfrac{1}{3} Bh V B h l \qquad B = \dfrac{\sqrt{3}}{4} l^2 B \, \dfrac{\sqrt{6}}{3}l h \, \dfrac{\sqrt{2}}{12} l^3 \qquad\dfrac{3h}{h-2} + \dfrac{6}{h+2} = -1 \qquad4(h + 4)(h - 1) = 0 \qquad h = -4 h = 1 h = -4 h = -4 h = 1 h = 1 -4 + 1 = -3 m>0 \qquad\dfrac{\left(\dfrac{7m^2+59m+24}{m^2+4m-5}\right)}{\left(\dfrac{m^2+4m-32}{3m+15}\right)} \dfrac{7m^2+59m-8}{3m+10} \dfrac{-32(7m^2+59m+24)}{-15(m+5)} \dfrac{21m+9}{(m-1)(m-4)} \dfrac{7m+3}{(m-1)(m-4)} \qquad\dfrac{7m^2+59m+24}{m^2+4m-5}\div\dfrac{m^2+4m-32}{3m+15} \qquad \dfrac{(7m+3)(m+8)}{(m+5)(m-1)} \div \dfrac{\red{(m-4)(m+8)}}{\blue{3(m+5)}} \qquad \dfrac{(7m+3)(m+8)}{(m+5)(m-1)} \cdot \dfrac{\blue{3(m+5)}}{\red{(m-4)(m+8)}} m 0 m\neq{\purple{-8},\green{-5}} m>0 \qquad\dfrac{21m+9}{(m-1)(m-4)} f(x)=-2.5(x+2)^2+8 g(x)=-2.5(x+2)^2+b xy a y f b y g a 5 b b y=a(x-h)^2+k (h,k) f(x)=-2.5(x+2)^2+8 (-2,8) a=8 g(x)=-2.5(x+2)^2+b (-2,b) a 5 b a=b-5 a=8 8=b-5 b=13 \qquad b=13 y=-2x^3+24x xy 2 (-2,-32) (2,32) x<-2 -22 x<-2 -22 x<-32 -3232 x<-32 -3232 y=-2x^3+24x (-2,-32) x<-2 (2, 32) -22 x<-2 -22 (x_1,y_1) (x_2,y_2) y y_1 y_2 x y (x,y) y 9 x x^2 x x_1=\dfrac{8}{3} x_2=-\dfrac{8}{3} y x y x_1=\dfrac{8}{3} x_2=-\dfrac{8}{3} \left(\dfrac{8}{3},\dfrac{13}{6} \right) \left(-\dfrac{8}{3},-\dfrac{1}{2} \right) y y_1+y_2 \qquad\dfrac{13}{6}+\left(-\dfrac{1}{2}\right)=\dfrac{5}{3} y=x^3-3x xy 2 (-1,2) (1,-2) x<-1 -11 x<-1 -11 x<-2 -22 x<-2 -22 y=x^3-3x (-1,2) x<-1 (1,-2) -11 x<-1 -11 b m n (x,y) -2 \qquad -14m+8n=20 b=-14 b -14 92.5\% x y 88\% 91\% x y 0.075x+.12y=0 0.015x-0.03y=0 0.925x+0.88y=91 0.925x+0.88y=0.91xy \quad [\text{grams of silver alloy}]\cdot [\text{percent silver}]=[\text{grams of pure silver}] x 92.5\% 0.925x y 88\% 0.88y 88\% 0.925x+0.88y x+y 91\% 0.91(x+y) \qquad 0.925x+0.88y=0.91(x+y) x y \qquad 0.015x-0.03y=0 \qquad-my = 1{,}500-4{,}500 m 1{,}500 + my -1{,}500 1{,}500 3{,}000 4{,}500 1{,}500 + my 4{,}500 my da a (\text{m/s}^2) d a d d d \text{ m/s}^2 d \text{ m/s}^2 d d a 0 d d d 20\% 500 25 3 20\% y=\green m\purple x+\red b \red b \green m \green{25} \red {500} \qquad\text{number of visitors}=\green{25}(\purple{\text{months since SEO ended}})+\red{500} 3 \qquad\green{25}(\purple3)+\red{500}=575 3 575 y=\red{a}\cdot \blue{b}^{\large\purple{x}} \red a \blue b \purple x 1 20\% \blue{120\%} \blue{1.2} \qquad\text{hypothetical number of visitors}=\red{500}\cdot\blue{1.2}^{\purple{\text{months since SEO ended}}} \qquad\red{500}\cdot\blue{1.2}^{\purple3}=864 864 3 \qquad864-575=289 289 40 (\text{mm}) (\text{mm}^3) 2{,}667\,\text{mm}^3 5{,}333\,\text{mm}^3 10{,}667\,\text{mm}^3 16{,}746\,\text{mm}^3 x \qquad 2x^2=d^2 \,x=\dfrac{d}{\sqrt2} \,x^2=\dfrac{d^2}{2} \dfrac{(40)^2}2 =800 h A V=\dfrac13 Ah 20 \qquad V=\dfrac13\cdot800\cdot 20=5{,}333\,\text{mm}^3 5{,}333\,\text{mm}^3 td d (\text{cm}) h d 28 \text{ cm} 28 \text{ cm} 28 \text{ cm} 28 \text{ cm} 16 d d (t, d) = (0, 28) 28 \text{ cm} 0 28 \text{ cm} \qquad (1+i)(1-i) i=\sqrt{-1} 2-2i 2i 0 2 i^2=-1 \qquad 2 y=3(x+6)^2+5 y (0,b) b y y y 0 x y y y (0,113) y (0,b) b=113 \qquad b=113 8 1 8 52 13 8 (\text{mi}) 1 m 13 1 =60 (\text{min}) \qquad \dfrac{8\text{ mi}}{60\text{ min}}=\dfrac{13\text{ mi}}{m\text{ min}} m 8 52 m 13 \qquad \dfrac{8\text{ mi}}{52\text{ min}}=\dfrac{13\text{ mi}}{m\text{ min}} m 97.5-84.5=13 y=-2\left(\dfrac{4}{3}\right)^x y=ab^x a y (0,a) y (0,-2) \qquad \quad y=2\left(\dfrac{4}{3}\right)^x y=-2\left(\dfrac{4}{3}\right)^x a>0 b>1 y=2\left(\dfrac{4}{3}\right)^x -1 x y=-2\left(\dfrac{4}{3}\right)^x x y 1 -\dfrac{8}{3} -1 -\dfrac{3}{2} y=-2\left(\dfrac{4}{3}\right)^x \qquad 36 35\% 75\% 5.85 12.6 17.55 23.4 35\% 35\% 36 \qquad 0.35\times36=12.6 12.6 36 \qquad 36-12.6=23.4 23.4 \qquad 0.75 \times23.4=17.55 17.55 23.4 \qquad 23.4-17.55=5.85 5.85 350 150 3:4 3:7 4:5 4:7 350-150=200 150:200 3:4 \qquad 3x^2+2x=11 b^2-4ac \qquad 3x^2+2x-11=0 0 5tm^2 7tm^2 91 5 7tm^2 P(t) t 2f \dfrac f2 P(t) \dfrac{t}{1.06}=1 t=1.06 1.06 1.1 1.1 v 2 5 3 2v^2 - 13v + 17 = 0 3v^2 - 15v - 4 = 0 3v^2 - 11v + 10 = 0 3v^2 - 19v + 10 = 0 v = \dfrac{d}{t} v t_1 t_2 t = t_1 + t_2 3 2 v 2 5 v - 5 \qquad t_2 = \dfrac{2}{v - 5} \qquad3 = \dfrac{2}{v} + \dfrac{2}{v -5 } v v \ne 5 v \ne 0 \qquad 3v^2 - 19v + 10 = 0 100\% 30\% 50\% 41\% 30\% 100\% 32\% 32\% 51\% 32\% 100\% 48\% 41\% 32\% 48\% 100\% 1.475 h t 12.5 1.5 1.6 3.0 3.1 4.9 y y=a(x-b)^2+c (b,c) 12.5 1.5 (1.5,12.5) \qquad h(t)=a(t-1.5)^2+12.5 a 1.475 (0,1.475) a a h t \qquad h(t)=-4.9(t-1.5)^2+12.5 0 t h=0 t\approx3.10 t\approx-0.10 3.1 \left(4x^5-8x^3+\dfrac{1}{3}x^2\right) \left(\dfrac{1}{2}x^3 - 4x^2\right) 4x^5 - 12x^3 + \dfrac{5}{6}x^2 4x^5 - \dfrac{15}{2}x^3 - \dfrac{11}{3}x^2 4x^5 - \dfrac{7}{2}x^3 - x^2 4x^5 - \dfrac{17}{2}x^3 + \dfrac{11}{3}x^2 0 \qquad 4x^5 - \dfrac{15}{2}x^3 - \dfrac{11}{3}x^2 \qquad\left(v+\dfrac{1}5\right)^2-9=0 -\dfrac{3}5 -\dfrac{2}5 -\dfrac{1}5 0 v -\dfrac{2}5 y=(x-3)^3 y=x^3 y=(x-h)^3+k h k y=(x-3)^3 3 0 y=(x-3)^3 \qquad\sqrt{4x+20} = x + 2 \qquad x = 4 \qquad x = -4 x=4 x= 4 x=-4 x = -4 x=4 4 196 (\text{cm}) 250\,\text{cm} 98\,\text{cm} 170\,\text{cm} 217\,\text{cm} 339\,\text{cm} 196\,\text{cm} h 60^\circ 170\,\text{cm} 4 3 85 3 5 105 a r 4 a \pink{4a} 3 r \blue{3r} 85 \qquad \pink{4a} + \blue{3r} = 85 3 \purple{3a} 5 \green{5r} 105 \qquad \purple{3a} + \green{5r} = 105 \qquad \left(t+\dfrac83\right)\left(t+b\right)=0 b -\dfrac83 \dfrac{13}3 b -\dfrac{13}3 -\dfrac{8}3 \dfrac{8}3 \dfrac{13}3 t=-\dfrac83 t=\dfrac{13}3 0 \left(t+\dfrac83\right) t=-\dfrac83 \left(t+b\right) t=-b t=\dfrac{13}3 -b=\dfrac{13}3 b -\dfrac{13}3 1{,}000 \qquad 2(x-3)^2-b=0 b x=3\pm\sqrt5 b -2 \ \ \ 2 \ \ \ 3 -3 2(x-3)^2-b=0 b (x-3)^2 x=3\pm\sqrt5 10 b 3\pm\sqrt{\dfrac{b}{2}} 3\pm\sqrt5 b=10 for every minutes of play time and the friends spent in total. On average, the friends played ping pong game every (\text{min}) for every minutes of playtime. We can set up a proportion to determine how many total minutes they spent playing if they paid 1 20 g 120 \qquad \dfrac{1\text{ game}}{20 \text{ min}}=\dfrac{g\text{ games}}{120\text{ min}} g 6 (x,y) (4,-4) (-2,2) (-4,4) (2,-2) (2,-4) (4,-2) y x x y=-x y y+2x^2=3x+16 x \qquad\qquad\qquad -2x^2+3x+16=-x x=4 x=-2 x x (4,-4) (-2,2) 100\ \text{dollars} 960 \text{pesos} \text{pesos} \text{dollars} 24{:}1 \text{dollars} \text{yen} 1{:}105 330\ \text{yen} 4200\ \text{yen} 6000\ \text{yen} 6300\ \text{yen} 24\ \text{pesos} 1 40 \qquad \dfrac{960}{24}= \dfrac{x}{1},\ \text{ so }\ x=40 100 - 40 = 60 \qquad \dfrac{60}{y}= \dfrac{1}{105} y=6300\ \text{yen} 6300\ \text{yen} \qquad 7x = 13\sqrt{x} x 0 \dfrac{49}{169} \dfrac{169}{49} \dfrac{13}{7} x \sqrt{x} 7x=13\sqrt x 2 0 0 \dfrac{169}{49} x \dfrac{169}{49} \qquad\qquad\qquad\qquad\qquad\qquad \text{Day } 1 \qquad\qquad\qquad\qquad\qquad\qquad \text{Day } 2 1 2 25^\text{th} 75^\text{th} 50^\text{th} 1 1.6 2 2.0 2.0 - 1.6 = 0.4 RI I R I = 4 0 4 4 4 4 I 4 R I 4 R R 10 I 4 4 4 75^\circ \text C 22^\circ \text C t \qquad T(t) =22 + 53 \,(0.74)^{t} 2 22^\circ \text C 51^\circ \text C 74^\circ \text C 75^\circ \text C 75^\circ \text C 22^\circ \text C 22^\circ \text C T(t) t=2 \qquad T(2) =22 + 53 \,(0.74)^{2}\approx 51^\circ \text C 51^\circ\text C. 2 51^\circ \text C. per pound as well as from selling pork. On Sunday, she makes the same amount of money from selling an equivalent pounds of beef at per pound as well as from selling pork. Which system of equations can be used to find out how many pounds of beef she made for a total of per pound, we can represent that as . The in pork can be represented by adding to . Therefore, we can write per pound is . When we add the pork, the equation becomes ABCD HIJK l^\circ 60^\circ 80^\circ 90^\circ 100^\circ 80 ABCD \overline{AD} \overline{BC} \overline{AD} \overline{BC} 80 l^\circ \qquad l^\circ = 80^\circ 24v^3w^8 O XYZ 10.8 XOZ 1.8 r \sqrt{12} 6 \dfrac{50}{3} 19.44 \qquad s = r \theta s r \theta s \theta r r 6 , between layers of molecules to the angle, , of incoming light rays with wavelength d= \dfrac{\lambda}{2\sin\theta} d= \dfrac{2\lambda}{\sin\theta} d= \dfrac{2\sin\theta}{\lambda} d= \dfrac{\sin\theta}{2\lambda} \pink{ \text{dividing both sides by } 2 } \blue{\text{divide both sides by } \sin\theta} \qquad d = \dfrac{\lambda}{2\sin\theta} \qquad FV(t)=1{,}500(1.045)^{\large{t}} FV t \qquad FV(t)=1{,}500(1.045)^{\large{t}} t=0 \qquad FV(0)=1{,}500(1.045)^0=1{,}500 -18\geq6-12ax 1-2ax 1-2ax\geq-23 1-2ax\leq-23 1-2ax\leq-3 1-2ax\geq-3 -18\geq6-12ax 1-2ax 1-2ax=\dfrac{6-12ax}{6} \dfrac{6-12ax}{6}=1-2ax 1-2ax 6 1-2ax\leq-3 1-2ax \qquad\qquad 1-2ax\leq-3 \theta=315^{\circ} \theta \dfrac{5\pi}{4} \dfrac{3\pi}{2} \dfrac{5\pi}{3} \dfrac{7\pi}{4} 2\pi 360^{\circ} \qquad 2\pi \text{ radians}=360^{\circ} 360 1^{\circ}=\dfrac{\pi}{180}\text{ radians} 2\pi \text{ radians}=360^{\circ} 8 \dfrac{\pi}{4} \text{ radians}=45^{\circ} 315^{\circ} 7\cdot 45^{\circ} 7\cdot \dfrac{\pi}{4} \qquad315^{\circ}=\dfrac{7\pi}{4} 7 3 2 5 2 3 5 7 d 7 3 7+3(d-1) 3 4 \green{3d+4} 2 d d-2 5 \red{5\left(d-2\right)} \qquad\green{3d+4}=\red{5\left(d-2\right)} 7 p 1760 2000 y p = 740+ ^{(y-1760)} a 800 1890 1800 1980 a 0.032 1.032 2.032 3.032 0.032^{(y-1760)} 0.032 < 1 1.032^{(y-1760)} 2.032^{(y-1760)} 2.032 > 2 y=1900 2^{(1900-1760)} = 2^{140} p=820 3.032^{(y-1760)} \qquad p = 740+1.032^{(y-1760)} \qquad \left(2b^{-5}\right)^3 b\neq0 \dfrac{2}{b^{15}} \dfrac{8}{b^{15}} \dfrac{1}{2b^{15}} \dfrac{1}{8b^{15}} \qquad (x\cdot y)^m=x^my^m \qquad \left(2b^{-5}\right)^3=2^3\cdot \left(b^{-5}\right)^3 (x^m)^n=x^{mn} \qquad 2^3\cdot \left(b^{-5}\right)^3=2^3\cdot b^{-15} x^{-n}=\dfrac{1}{x^n} x\neq0 b\neq0 \qquad \dfrac{8}{b^{15}} 4 16 (\text{c}) 1 (\text{gal}) 25\% 33\% 67\% 75\% \qquad \text{total volume} = 1\:\text{gal} 4 \qquad \text{volume taken away} = 4\:\text{c} \qquad \text{percent of total that is remaining} \leftarrow \qquad \text{remaining volume} = \text{total volume} - \text{volume taken away} \qquad \text{remaining volume} = 1\:\text{gal} - 4\:\text{c} 1 16 \qquad \text{remaining volume} = 16\:\text{c} - 4\:\text{c} \qquad \text{remaining volume} = 12\:\text{c} 75\% l 60 w 30 200 \text{\red{at most}} 60 \text{\red{less than or equal}} 60 \qquad l \red{\leq} 60 \text{\blue{at least}} 30 \text{\blue{greater than or equal}} 30 \qquad w \blue{\geq} 30 l+l+w+w 2l+2w \text{\green{no more than}} 200 2l+2w \text{\green{less than or equal to}} 200 \qquad 2l+2w \green{\leq} 200 2 (r,s) r+s -5.2 -5.1 0.1 5.1 r s r s s r=-52s -k+78 = 98 - 20 k k 1859 24 1920 10 R t 1859 R(t)=24+\left(1.3845\right)t R(t) =24\left( 1.3845\right)^t R(t)=24\left(0.6155\right)^t R(t)=10^{10}\left(1.3845\right)^t \qquad R(t)=24+\left(1.3845\right)t 10\,\text{billion} 1920 \qquad R(t)=24\left(0.6155\right)^t \qquad R(t)=10^{10}\left(1.3845\right)^t t=0 \qquad R(t)=24\left( 1.3845\right)^t 1920 61 1859 R(61)\approx 10\,\text{billion} t 1859 \qquad R(t)=24\left( 1.3845\right)^t 27{,}000 1 301 1 1{,}300 27{,}000 r 301 \left(\text{mi}^2\right) \qquad \dfrac{27{,}000\text{ residents}}{1\text{ mi}^2}=\dfrac{r\text{ residents}}{301\text{ mi}^2} r 1 1{,}309 s 8{,}224{,}825 \qquad \dfrac{1\text{ subway car}}{1{,}300\text{ residents}}=\dfrac{s\text{ subway cars}}{8{,}127{,}000\text{ residents}} s 6{,}300 \qquad100-121k^2=0 k=\dfrac{100}{121} k=-\dfrac{100}{121} k=\dfrac{100}{121} k=\dfrac{10}{11} k=-\dfrac{10}{11} k=\dfrac{10}{11} 0 x^2 \qquad (10-11k)(10+11k)=0 \qquad10-11k=0 \qquad \text{or} \qquad 10+11k=0 k k=\dfrac{10}{11} k=-\dfrac{10}{11} k=-\dfrac{10}{11} k=\dfrac{10}{11} \left(\text{in} \, \dfrac{\text m}{\text s}\right) (\text{in N} | | meters per second , it experiences a drag force of newtons . The table above represents the design engineer's measurements. If the drag force can be modeled by a quadratic equation of the form , what value of speed, in meters per second, corresponds a drag force of b c b c v 2 F = bv + cv^2 2 2 b b , we can set the expressions for equal to each other and solve for c b \qquad F = 10v + 10v^2 F = 120 v \qquad 120 = 10v + 10v^2 av^2 + bv + c = 0 v (v + 4) (v - 3) 0 v v = 3.0 \,\dfrac {\text m} {\text s} \qquad 15y- 5\sqrt{y} = 0 y 0 \dfrac{1}{3} \dfrac{1}{9} 3 5\sqrt{y} y=\sqrt y\cdot \sqrt y \qquad 5\sqrt{y}\left(3\sqrt y - 1\right) = 0 2 0 0 0 \dfrac{1}{9} 0 p>0 \left(p^m\right)^{2n}\cdot \left(p^{2m}\right)^n=16^{mn} p 2 \sqrt{8} 4 p \qquad \left(a^m\right)^n=a^{mn}\qquad \qquad a^m\cdot a^n=a^{m+n} p^{4mn}=16^{mn} (p^4)^{mn}=16^{mn} \qquad p^4=16 p p=\pm2 p>0 p=2 L =21 y=11 20^\circ \overline{AB} \overline{CD} \overline{AB} 5.5 \sin(20^\circ) \approx 0.342 \cos(20^\circ) \approx 0.940 \tan(20^\circ) \approx 0.363 x \overline{CD} \tan(20^\circ) \approx 0.363 \overline{AB} \overline{AB} 20^\circ 20^\circ x x 6 1^{\text{st}} 2^\text{nd} 17 1^{\text{st}} 2^{\text{nd}} 1^{\text{st}} 17 2^{\text{nd}} 2^{\text{nd}} \sin{\dfrac{\pi}{2}} -1 0 \dfrac{\sqrt{2}}{2} 1 \theta P P= (\cos{\theta}, \sin{\theta}) \dfrac{\pi}{2} (0,1) y \sin{\dfrac{\pi}{2}}=1 15\% 2 y=\green m\purple x+\red b \red b \green m billion from \qquad\green{179{,}500{,}000}(2)+\red{2{,}100{,}000{,}000}=2{,}459{,}000{,}000 y=\red{a}\cdot \blue{b}^{\large\purple{x}} \red a \blue b \purple x 1 15\% \blue{115\%} \blue{1.15} \quad \text{hypothetical revenue}=\red{2{,}100{,}000{,}000}\cdot\blue{1.15}^{\purple{\text{years since 2 years ago}}} \qquad\red{2{,}100{,}000{,}000}\cdot\blue{1.15}^{\purple2}=2{,}777{,}250{,}000 15\% \dfrac{1}{3} to spend this week, the florist purchases bushels of flowers at per bushel and gallons of nutrient-rich water at 120 20 100 80 60 40 80 10 \dfrac{1}{3} w f (0,0) (120,40) for a bushel of flowers and for a gallon of water. The florist has to spend, so the cost must be *less than or equal to* to f=60, w=40 60 40 \qquad \sqrt{2y^3z}\cdot \sqrt{8y^{13}z^8} y, z \geq 0 4y^4z^3 8y^4z^3 4y^8z^4\sqrt{z} 8y^8z^4\sqrt{z} y, z \geq 0 \sqrt{2y^3z} \sqrt{8y^{13}z^8} \sqrt{a} \sqrt{b} \sqrt{a}\cdot \sqrt{b}=\sqrt{a\cdot b} a^m\cdot a^n=a^{m+n} \sqrt{16y^{16}z^9} \sqrt{a}\cdot \sqrt{b}=\sqrt{a\cdot b} \sqrt{y^{16}}=y^8 y^8\cdot y^8=y^{16} \sqrt{z^{8}}=z^4 z^4\cdot z^4=z^{8} 4y^8z^4\sqrt{z} y = \dfrac{1}{12} - x xy x + y = 1 y y x y x + y = 1 y = -x + 1 = (-1)x + 1 m = -1 y b = \dfrac{1}{12} y = \dfrac{1}{12} - x y \dfrac{1}{3}(7s^3+7s^2-6s-2) \dfrac{1}{3}(7s^3+7s^2-6s+2) s s -7s s -2 \dfrac43 s -2s^0 \dfrac43s^0 \qquad\quad (s-2)+\left(\dfrac{7}{3}s^3+\dfrac{7}{3}s^2-7s+\dfrac{4}{3}\right) \qquad =\left(\dfrac{7}{3}{s}^3+\dfrac{7}{3}{s}^2-6s\blue{ - \dfrac23}\right) \dfrac13 y=-(x+4)^2+5 \qquad y=-3x+b b (-4,5) (-7,-4) (-6,1) (-1,-4) (-2,1) (-4,5) y=-3x+b m=-3 (-4,5) (-1,-4) (-1,-4) x y (-1,-4) x y (-1,-4) (-1,-4) \qquad\sqrt{3m^2 + 24} = 2m + 2 -10 -8 2 8 \qquad m = -10 \qquad m = 2 m= 2 m= 2 m= -10 m= -10 m=2 2 \qquad(4x^3-5x)+(8x-3x^3) x^3+3x x^3-3x 7x^3-3x 7x^3+3x \qquad x^3 + 3x x^3+3x a(x) x \qquad a(x) = 0.14x-0.0014x^2 \qquad a(x) = k(x - x_0)^2+h_0 k (x_0, h_0) k (50, 3.5) 3.5 50 3.5 C 4\text{ meters (m)} x^{\circ} 20 \text{ m} x 5 80 286 304 s \theta r s=r\theta \theta \qquad 20=4\cdot \theta \theta \theta=5 \theta 2\pi 360^{\circ} \qquad 2\pi \text{ radians}=360^{\circ} 2\pi 1\text{ radian}=\dfrac{180}{\pi}^{\circ} 5 \text{ radians} \dfrac{180}{\pi} x 286 \text{sin}(r\pi) = \text{cos}(4r\pi) 0< r<1 r r \qquad 0.1 \dfrac {1}{10} \quad \left(\dfrac{\text{bbl}}{\text{day}}\right) 30\,\dfrac{\text{bbl}}{\text{day}} 30 \dfrac{\text{bbl}}{\text{day}} 30 \dfrac{\text{bbl}}{\text{day}} 30 \dfrac{\text{bbl}}{\text{day}} 30 \dfrac{\text{bbl}}{\text{day}} 30 \dfrac{\text{bbl}}{\text{day}} 11 30 ( 11 0) 8 30 11 8 30 \dfrac{\text{bbl}}{\text{day}} \qquad (2b-1)^3 2b^3-1 8b^3-1 4b^3-10b^2+4b-1 8b^3-12b^2+6b-1 \qquad (2b-1)^3=(2b-1)(2b-1)(2b-1) 2b-1 8b^3-12b^2+6b-1 3^{\text{rd}} t d \qquad t^2=3.98\cdot10^{-20}\cdot d^3 4 \qquad t^2=\red{3.98\cdot10^{-20}\cdot d^3} d \green{4d} \qquad\sqrt{64t^2}=8t 8 2004 16 223{,}357{,}000 66\% 16 46.4\% 16 2004 68{,}400{,}000 104{,}000{,}000 147{,}400{,}000 157{,}000{,}000 16 2004 66\% 223{,}357{,}000 66\% 223{,}357{,}000 \qquad 0.66\times223{,}357{,}000=147{,}415{,}620 147{,}415{,}620 16 2004 46.4\% 46.4\% 147{,}415{,}620 \qquad 0.464\times147{,}415{,}620=68{,}400{,}847 68{,}400{,}000 2004 \qquad(x-h)^2+(y-k)^2=r^2 x y (h,k) r y x h k r y=r-x+h+k y=r-(x-h)^2+k y=\pm\sqrt{r^2-(x-h)^2}+k y=\pm\sqrt{r^2-(x-h)^2+k} y \red{\text{subtracting }(x-h)^2} \green{\text{add }k} \qquad y=\pm\sqrt{r^2-(x-h)^2}+k \qquad\dfrac{x^2+6x-30}{30-6x-x^2} x^2+6x-30\neq0 -1 1 0 \dfrac{(x+6)(x-5)}{(6-x)(5+x)} 30-6x-x^2 -1(x^2+6x-30) \qquad \dfrac{(x^2+6x-30)}{-1(x^2+6x-30)} x 0 x^2+6x-30\neq\purple0 -1 x^2+6x-30\neq 0 xy x^2+y^2-10x+32y+272=0 (10,-32) 4\sqrt{17} (-10,32) 4\sqrt{17} (-5,16) 3 (5,-16) 3 \qquad(x^2-10x)+(y^2+32y)=-272 x y \qquad(x^2-10x\pink{+25})+(y^2+32y\blue{+256})=-272\pink{+25}\blue{+256} \qquad(x-5)^2+(y+16)^2=9 (\green h,\purple k) \red r \qquad(x-\green h)^2+(y-\purple k)^2=\red r^2 \qquad(x-\green5)^2+(y-(\purple{-16}))^2=\red3^2 (5,-16) 3 A_1 V_1 A_2 V_2 \qquad A_1V_1=A_2V_2 \dfrac{1}{4} \dfrac{1}{4} \dfrac{3}{4} \dfrac{4}{3} 4 A_1 A_2 \dfrac{1}{4} \dfrac{3}{4} \purple{\dfrac{3}{4}A_1} A_2 \qquad A_1V_1=\purple{\dfrac{3}{4}A_1}V_2 V_2 \dfrac{4}{3} | | | | \dfrac{\text{rent}}{\text{square feet}} (x,y) x y x x \qquad\qquad\qquad x^2+x+5=2x+7 x x x 2\cdot-1=-2 \qquad \sqrt{-2p-1}=p+2 -6 -5 -1 1 p 0 p=-5 p=-1 p=\green{-5} p=-5 p=\green{-1} p=-1 -1 -1 y-3=\left(\dfrac{1}{3}\right)^x y y=\left(\dfrac{1}{3}\right)^x+3 y=\left(\dfrac{1}{3}\right)^x 3 y=\left(\dfrac{1}{3}\right)^x y=ab^x a>0 02 -1 \dfrac 2 3 \dfrac{x+1}{x-1} \dfrac{x-2}{2-5x} \dfrac{ \pink{ 3x^2 + x - 2 } }{ 3x^2 - 5x + 2 } 1 x 0 x>2 \qquad \dfrac{x+1}{x-1} y=\dfrac{x+4}{2x-5} y=\dfrac{ax+b}{cx+d} x y=\dfrac{a}{c}\; y=\dfrac{x+4}{2x-5} 2x-5=0 x=\dfrac{5}{2} x x+4=0 (-4,0) y=\dfrac{1}{2} y=\dfrac{x+4}{2x-5} \qquad 800 1 4 30{,}000 (\text{c}) 1 (\text{hr}) 800 1 4 800\cdot4=3{,}200 3{,}200 1 h 30{,}000 \qquad \dfrac{3{,}200\text{ c}}{1\text{ hr}}=\dfrac{30{,}000\text{ c}}{h\text{ hrs}} h 9.4 30{,}000 (3c-4c^2+c^3)-(5c^2+8c^3-6c) 7c^3 + 9c^2 - 3c 7c^3 + c^2 - 3c -7c^3 + c^2 + 9c -7c^3 - 9c^2 + 9c (3c-4c^2+c^3) 300 1 6 50 n 180 180\ge\dfrac{n}{6}+\dfrac{5n}{6} 180>\dfrac{n}{6}+\dfrac{5n}{6} 300\le6n+\dfrac{6}{5}n 300<6n+\dfrac{6}{5}n 50 \dfrac{50}{60} \dfrac{5}{6} n 6 1 \dfrac{1}{6} n \dfrac{n}{6} \dfrac{5}{6} \qquad\text{time to address }n\text{ invitations}\ge\dfrac{5}{6}n 180 \qquad180\ge\dfrac{n}{6}+\dfrac{5n}{6} \qquad180\ge\dfrac{n}{6}+\dfrac{5n}{6} xy y=2(x-3)^2-7 y=-(x+a)^2+2 a a \ \ \ 3 -3 \ \ \ 6 -6 y=a(x-h)^2+k a h k x=h y=2(x-3)^2-7 x=3 y=-(x+a)^2+2 x=3 a -3 a=-3 \qquad 9 \left| -\dfrac z 3 \right| + 6 < 30 -6 -8 \;\; \text{ and } \;\; z < 8 \qquad -8 < z < 8 yD D y D 175 \text{ m} 225 D (y, D) = (0, 225) D D 0 \qquad s(s-1)=2 s=-2 s=1 s=0 s=-1 s=0 s=1 s=2 s=-1 -2 -1 -2 1 2 -1 s=-2 s=1 R(p) = (24627 - p) (287 + 48p/1000) 287 . For each drop of in the average electric vehicle's purchase price, it is expected that the monthly purchase rate will increase by . Which of the following best models the monthly electric vehicle revenue in this country as a function of price reductions of R(p) = 24{,}627 (287 - 952p) R(p) = 1{,}000(24{,}627 - p) (287 + 48p) R(p) = (24{,}627 - p) (287 + p) R(p) = (24{,}627 - 1{,}000p) (287 + 48p) p reductions in vehicle price and vehicles to be sold each month at more electric vehicles for each reduction in their average price, we see that a vehicle price of corresponds to \qquad R(p)=(24{,}627 - 1{,}000p) (287 + 48p) g(x)=3\left(\dfrac{1}{2}\right)^{-x}+2 xy g y g (0,2) x g (0,3) g y \qquad g(x)=3\left(\dfrac{1}{2}\right)^{-x}+2 f(x)=\left(\dfrac{1}{2}\right)^x x -2 -1 0 1 2 f(x) 4 2 1 \dfrac{1}{2} \dfrac{1}{4} f(x)=\left(\dfrac{1}{2}\right)^x g(x)=3\left(\dfrac{1}{2}\right)^{-x}+2 f g f y {\blue{f_2}}) 3 ( \red{f_3}) 2 ( \green{g}) g k\ge33 \qquad\dfrac{4k^2-12k+9}{2k^2+19k-33}\cdot\dfrac{k^2+8k-33}{k^2-3k} \dfrac{2k-3}{k} \dfrac{8(4k^2+13)}{(2k+19)} \dfrac{(2k^2+9)(2k^2-33)}{4k^4-57k^2-33} \dfrac{2k^4+20k^3-73k^2+53k-297}{k(k^3+13k^2-30k+11)} k 0 k\ge33 \qquad\dfrac{2k-3}{k} 1.5 1.75 18 p p>41 p>54 p>72 p>90 1.5 18 1.5p+18 1.75 1.75p (<) \qquad1.5p+18<1.75p 1.5p \qquad18<0.25p 0.25 \qquad72

72 and the monthly membership fee for an adult is in membership fees for the month of January, which of the following represents the relationship between the number of student memberships, , and the number of adult memberships, 25x+40y=12{,}250 40x+25y=12{,}250 \dfrac{x}{25}+\dfrac{y}{40}=12{,}250 \dfrac{x}{40}+\dfrac{y}{25}=12{,}250 \qquad [\text{money from student memberships}]+[\text{money from adult memberships}]=[\text{total collected from membership fees}] per month and students were members that month, we have that per month, and adults were members that month, we have that \qquad 25x+40y=12{,}250 x y \qquad 25x+40y=12{,}250 \qquad \dfrac{2}{1+i} i=\sqrt{-1} 1-i -1-i 1+i 1-i a+bi a b 1-i \qquad \dfrac{2}{1+i}=1-i per day in addition to tips of of all her customer receipts, f(t) = 50 + 20t f(t) = 300 + 20t f(t) = 50 + 0.2t f(t) = 300 + 0.2t 50 6 6 0.2 t 20\% 300 0.2t f(t) \qquad f(t)=300+0.2t f(t) = 300 + 0.2t xy \left(\dfrac{5}{8},-\dfrac{6}{5}\right) \dfrac{7}{10} \left(x+\dfrac{5}{8}\right)^2+\left(y-\dfrac{6}{5}\right)^2=\dfrac{49}{100} \left(x+\dfrac{5}{8}\right)^2+\left(y-\dfrac{6}{5}\right)^2=\dfrac{49}{400} \left(x-\dfrac{5}{8}\right)^2+\left(y+\dfrac{6}{5}\right)^2=\dfrac{49}{100} \left(x-\dfrac{5}{8}\right)^2+\left(y+\dfrac{6}{5}\right)^2=\dfrac{49}{400} (\green h,\purple k) \red r \qquad(x-\green h)^2+(y-\purple k)^2=\red r^2 \qquad\dfrac{1}{2}\cdot\dfrac{7}{10}=\dfrac{7}{20} \qquad\left(x-\green {\dfrac{5}{8}}\right)^2+\left(y-\left(\purple {-\dfrac{6}{5}}\right)\right)^2=\red {\left(\dfrac{7}{20}\right)}^2 \qquad\left(x-\dfrac{5}{8}\right)^2+\left(y+\dfrac{6}{5}\right)^2=\dfrac{49}{400} (x_1,y_1) (x_2,y_2) y_1 y_2 y x y y_1=0 \quad \text{or}\quad y_2=-\dfrac{100}{7} y_1 y_2 \quad 0\cdot-\dfrac{100}{7}=0 \qquad\dfrac{2d^2-3d}{16d^4-81} d>2 \dfrac{d(2d-3)}{(4d^2-9)^2} \dfrac{d}{(2d-3)(4d^2+9)} \dfrac{d}{(2d+3)(4d^2-9)} \dfrac{d}{(2d+3)(4d^2+9)} 2d^2-3d d d(2d-3) 16d^4-81 (4d^2-9)(4d^2+9) (4d^2-9)(4d^2+9) (4d^2-9) \qquad (2d-3)(2d+3)(4d^2+9) \qquad \dfrac{d(2d-3)}{(2d-3)(2d+3)(4d^2+9)} d 0 d\neq\purple{\dfrac32} d>2 \dfrac{d}{(2d+3)(4d^2+9)} d>2 \qquad f=12gh+15g g f h g=\dfrac{f}{12h+15} g=\dfrac{f}{12h-15} g=\dfrac{f-15}{12h} g=\dfrac{f}{27h} g \green{\text{factor } g \text{ from the expression }12gh+15g} g \blue{\text{dividing by }12h+15} \qquad g=\dfrac{f}{12h+15} s 150 80 t t = s + 230 t = 2s + 230 t = \dfrac{5}{2}s + 230 t = 4s + 230 s s s + 150 2s 80 s + s + 150 + 2s + 80 4s + 230 \qquad t=4s+230 t=4s+230 \quad 5 10 5 \qquad(x-1)^2 + (x+1)^2 2x -2x 2x^2+2 2x^2 -2x 2x 0 \qquad 2x^2+2 t \qquad {18\cdot16^{0.0125t}} \blue{A}\cdot \red{B}^{\purple {\large m}\green {\large t}} \red B \purple {m}\cdot \green t=1 \red B 2 16 2^4=16 \qquad {18\cdot\left( 2^4\right)^{0.0125t}} {\left(x^{\large y}\right)^{\large z}=x^{{\large y}\cdot {\large z}}} \qquad{18\cdot2^{4\cdot0.0125t}=\blue{18}\cdot\red 2^{\purple{0.05}\green{t}}} \purple m\cdot \green t=1 \purple m \purple{0.05} \purple{0.05} 20 2y=-4x+8 2y=-4x+16 xy y y x y=mx+b m b y -2 y 4 -2 y -8 \qquad\dfrac{2}{x^2-9} + \dfrac{1}{x^2+9x+18} x>-2 \dfrac{3}{2x^2+9x+9} \dfrac{2x+13}{x^2+9x+18} \dfrac{3}{x^2+3x-18} \dfrac{3}{x^2+9x+18} (x-3)(x+3)(x+6) \qquad \dfrac{2}{(x-3)(x+3)}+\dfrac{1}{(x+3)(x+6)} (x-3)(x+3)(x+6) \green{\dfrac{x+6}{x+6}} \red{\dfrac{x-3}{x-3}} \qquad\green{\dfrac{x+6}{x+6}}\cdot \dfrac{2}{(x-3)(x+3)}+\red{\dfrac{x-3}{x-3}}\cdot \dfrac{1}{(x+3)(x+6)} \qquad =\dfrac{2x+12}{(x-3)(x+3)(x+6)} + \dfrac{x-3}{(x-3)(x+3)(x+6)} \qquad =\dfrac{3x+9}{(x-3)(x+3)(x+6)} \quad =\dfrac{3(x+3)}{(x-3)(x+3)(x+6)} x 0 x\neq{\purple{-3}} x>-2 \qquad \dfrac{3}{x^2+3x-18} x X y Y X Y y x X Y x y 5 3 xy 5 (5,0) 3 (0,3) \qquad y x 200 15 2 r 2r-2\left(r+15\right)=200 2r-2\left(r-15\right)=200 2r+2\left(r+15\right)=200 2r+2\left(r-15\right)=200 \text{distance}=\text{rate}\cdot\text{time} r 2 \red{2r} r+15 2 \green{2\left(r+15\right)} 200 \purple{200} \qquad\red{2r}+\green{2\left(r+15\right)}=\purple{200} \qquad{2r}+{2\left(r+15\right)}={200} 80 (^\circ\,\text{F}) 40^\circ\,\text{F} mT T m 80 m=0 T=80 m \red{(0,80)} 40 \qquad 40^\circ\,\text{F} \qquad 40^\circ\,\text{F} \qquad \qquad ^2 ^2 180 90\% 360 0.031 M k t t=360 M=0.031 k t=0 M 3.1 35 , which system can be used to find the number of dimes and d n 35 d+n=35 0.05n 0.1n 0.05n+0.1d=3.3 100 5n+10d=330 \qquad\dfrac{12x-x^2}{x^2-10x-24} x<10 -\dfrac{x}{x-2} \dfrac{x}{x-2} \dfrac{x}{x+2} -\dfrac{x}{x+2} x \qquad 12x-x^2=x(12-x) \qquad x^2-10x-24=(x-12)(x+2) \qquad \dfrac{x(12-x)}{(x-12)(x+2)} 12-x=\red{-1}(x-12) x 0 x\neq\purple12 x<10 -\dfrac{x}{x+2} x<0 \sqrt{32}+\sqrt{8}=a\sqrt{2} a \sqrt{x} \sqrt{y} \qquad \sqrt{x\cdot y}=\sqrt{x}\cdot \sqrt{y} \sqrt{32} \sqrt{8} \sqrt{32}+\sqrt{8}=a\sqrt{2} a=6 \qquad a=6 260 (\text{ft}) 3 1 (\text{mi}) 1\ \text{mi}=5{,}280\ \text{ft} 21 24 25 29 s 260\text{ ft} 3 \dfrac{260}{3}s s 1\ \text{mi} 5{,}280\ \text{ft} \qquad \dfrac{260}{3}s=5{,}280 1\ \text{mi} 61 \qquad\left(x-\sqrt{3}\right)^2(x-\sqrt{7}) x=-\sqrt{3} x=-\sqrt{7} x=\sqrt{3} x=\sqrt{7} x=3 x=\sqrt{7} x=-3 x=-\sqrt{7} 0 0 \qquad\blue{(x-\sqrt{3})}\red{(x-\sqrt{3})}\green{(x-\sqrt{7})}=0 \blue{x-\sqrt{3}}=0 \sqrt{3} \qquad x=\blue{\sqrt{3}} \red{x-\sqrt{3}}=0 \sqrt{3} \qquad x=\red{\sqrt{3}} \green{x-\sqrt{7}}=0 \sqrt{7} \qquad x=\green{\sqrt{7}} x=\blue{\sqrt{3}} x=\green{\sqrt{7}} \qquad A=\dfrac{TP}{TP+FP+FN+IP} A TP FP FN IP IP=-FP-FN IP=\dfrac{1}{A}-1-FP-FN IP=\dfrac{TP}{A}-TP+FP+FN IP=\dfrac{TP}{A}-TP-FP-FN IP \red{\text{multiplying by}} \blue{\text{divide by }A} IP \green{\text{subtracting }(TP+FP+FN)} \qquad IP=\dfrac{TP}{A}-TP-FP-FN 150 120 24 16 67\% 73\% 78\% 80\% \qquad \dfrac {\text{total free-throws made}}{\text{total free-throws attempted}}\times 100 136 174 \qquad \dfrac {136}{174}\times 100 78 78\% \qquad S = 27+6\cdot t\ S t 2010 2010 6 27 6\% 6 y=mx+b m x S=27+6\cdot t 6 S 6 6 3 2 100 50 1 1 4 50 2{,}500 100 2 100 \qquad \dfrac{ 2\:\text{weeks} }{ 100\:\text{blocks} } 50 1 50 b \qquad \dfrac{ 50\:\text{weeks} }{ b\:\text{blocks} } b 2{,}500 1 \qquad d = 1.06 ( 212 - t ) d t 212 212 212 212 212 1.06 (212 - t) t = 212 d d 212 212 \qquad\qquad\qquad\qquad\text{U.S. prime lending rates}, (y) \qquad\qquad\qquad\qquad\qquad \text{Years since 2004}, (x) 2004 2009 y=-0.65x^2-3.74x+3.17 y=0.65x^2-3.74x+3.17 y=-0.65x^2+3.74x+3.17 y=0.65x^2+3.74x+3.17 2004 2007 2008 2009 y=ax^2+bx+c a,b c a<0 \qquad y=-0.65x^2-3.74x+3.17\qquad \qquad y=-0.65x^2+3.74x+3.17 a \qquad y=-0.65x^2-3.74x+3.17\qquad \qquad y=-0.65x^2+3.74x+3.17 a c a y c b x=\dfrac{-b\ \ }{2a} x=2.9 \qquad y=-0.65x^2+3.74x+3.17 \qquad\qquad\qquad\qquad\text{U.S. prime lending rates}, (y) \qquad\qquad\qquad\qquad\qquad \text{Years since 2004}, (x) \qquad \dfrac{3|3x+4|}{2}\geq3 -\dfrac43 \leq x \leq \dfrac43 x\le-2 \;\; \text{ or } \;\; x\ge-\dfrac23 2 2 3 2 -1 \qquad x\leq-2 \;\; \text{ or } \;\; x\geq-\dfrac23 \qquad x^2-2x+k=0 k k 1-\sqrt{2} 1+\sqrt{2} -1 -\dfrac{1}{2} \dfrac{1}{2} 1 x_1 x_2 x^2-2x+k=0 x^2-(x_1+x_2)x+x_1x_2=0 k k=\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)=-1 x=1\pm\sqrt{2} k=-1 110 20 k j k j 110 k+j = 110 20 k=j+20 \qquad\dfrac{d-5}{d-3} + \dfrac{5d-2}{4d-12} = \dfrac{3}{2} d = \dfrac{3}{4} d = \dfrac{4}{3} d = \dfrac{3}{2} d = 3 4d - 12 \qquad 9d - 22 = 6d - 18 d d = \dfrac{4}{3} \qquad\quad \left(w-\dfrac32\right) \qquad =\left(\dfrac{2w}2-\dfrac32\right) \qquad =\left(\dfrac{2w-3}2\right) \qquad\quad \left(\dfrac{2w+7}2\right) \qquad ax^2+5x+2=0 a x=-2 x=-\dfrac{1}{2} a -2 \ \ \ 2 \ \ \ 3 -3 ax^2+5x+2=0 x=-2 x=-\dfrac{1}{2} ax^2+5x+2 a ax^2+5x+2=0 \qquad(x+2)(2x+1)=0 \red{2}x^2+5x+2=0 a 2 \qquad a=2 2010 2010 645{,}149 48.43 2{,}695{,}598 227.13 362{,}470 35.67 1{,}517{,}550 135.09 2010 13{,}321 11{,}868 10{,}161 11{,}233 2010 12 15 s f(s) = 12s + 15 f(s) = 15s + 12 f(s) = 12s + 12 f(s) = 15s + 15 s 12s 15 \qquad f(s)=12s+15 f(s) = 12s + 15 \qquad \dfrac{f(t-1)}{f(t)} = 1.0044 f(t) t f(t) \qquad\dfrac23-5x= b x+\dfrac13 b b 5 0 -5 \dfrac23 \qquad \blue a x+\red b=\blue c x + \red d \blue a=\blue c \red b\neq \red d \red b=\red d x \red {\dfrac23}\neq \red {\dfrac13} \blue b=\blue {-5} \blue {5}{x} x b, b=-5 \qquad\sqrt{3}t^2+5t+\sqrt{27}=0 i=\sqrt{-1} t=\dfrac{-4\sqrt{11}i}{6} t=\dfrac{-3\sqrt{33}i}{6} t=\dfrac{-5+\sqrt{11}i}{6} t=\dfrac{-5\sqrt{3}+\sqrt{33}i}{6} \qquad a=\sqrt{3},\qquad b=5,\qquad c=\sqrt{27} \dfrac{\sqrt{3}}{\sqrt{3}} i=\sqrt{-1} t=\dfrac{-5\sqrt{3}\green{+}\sqrt{33}i}{6} t=\dfrac{-5\sqrt{3}\red{-}\sqrt{33}i}{6} \qquad t=\dfrac{-5\sqrt{3}+\sqrt{33}i}{6} \text{(cm)} d d 4.8 1{,}000 \left(\text{m}^3\right) 10\sqrt[3]{3\pi^2} 20\sqrt[3]{3\pi^2} 30\sqrt[3]{3\pi^2} 40\sqrt[3]{3\pi^2} \qquad V = \dfrac{1}{3}\pi r^2h V r h 1{,}000 \text{ m}^3 20 \sqrt[3]{3\pi^2} y<0 z<0 \qquad\dfrac{y-10}{14z^2}\cdot\dfrac{3z}{10-y} \dfrac{3}{14z} -\dfrac{3}{14z} \dfrac{42z^3}{y^2-100} \dfrac{42z^3}{y^2-20y+100} \qquad\dfrac{(y-10)}{14\cdot z\cdot z}\cdot\dfrac{3\cdot z}{-1(y-10)} y z 0 \qquad -\dfrac{3}{14z} \qquad -7(x-8)^2=-63 x=k x=l k \cdot l 7 12 13 19 Y=(x-8) -7Y^2=-63 Y -7 Y \qquad Y=\pm 3 x x x-8 Y \qquad x-8=\pm 3 8 \qquad x=8\pm 3 k=8+3=11 l=8-3=5 \qquad 11\cdot5=55 k\cdot l=55 y=a(x-h)^2+k (h,k) a y=-(x-2)^2+6 (2,6) a y+\dfrac{1}{2}x=-5 y=mx+b m b y -\dfrac{1}{2} y -5 (2,6) -\dfrac{1}{2} y -5 25 (\text{g}) 40 (\text{ml}) \left(\dfrac{\text{g}}{\text{ml}}\right) 200\ \text{ml} m 200m=(25)(40) 200m=\dfrac{25}{40} \dfrac{8}{5}=\dfrac{m}{200} \dfrac{5}{8}=\dfrac{m}{200} \dfrac{\text{mass}}{\text{volume}} \qquad\qquad\dfrac{\text{grams}}{\text{milliliters}} 25\ \text{g} 40\ \text{ml} \qquad \dfrac{25}{40}=\dfrac58 m\ \text{grams} 200\ \text{ml} \dfrac{m}{200} \qquad\qquad\dfrac{5}{8}=\dfrac{m}{200} \dfrac{5}{8}=\dfrac{m}{200} 5{,}000 500 5{,}000 Which of the following could be the number of units sold in a month if the company's profit decreased 100 900 1{,}000 9{,}000 460 540 4{,}600 5{,}400 u \qquad |u - 5| u 5 for every units more or less than u if or 1{,}000 9{,}000 \qquad\qquad a^2 = b^2+c^2-2bc\cos A A B C a b c \cos A a b c \cos A = \dfrac{a^2}{b^2+c^2-2bc} \cos A = a^2-b^2-c^2+2bc \cos A = \dfrac{a^2-b^2-c^2}{2bc} \cos A = \dfrac{a^2-b^2-c^2}{-2bc} -2bc\cos A \blue{\text{subtracting } a^2 \text{ and}\;\ b^2} \green{\text{divide both sides by the expression } -2bc} \cos A \qquad \cos A=\dfrac{a^2-b^2-c^2}{-2bc} xy 4x^2+4y^2-24x=28 (51,14) (7,10) (0,0) (0,7) (\green h,\purple k) \red r \qquad (x-\green h)^2+(y-\purple k)^2=\red r^2 4 4 \qquad x^2+y^2-6x =7 x x \qquad(x-3)^2+y^2=16 \sqrt {16}=4 8 8 \angle ADB \angle CDB {AD}={CD}=2x-3 ABCD 13\ \text{cm} \overline{AB} 2\dfrac{1}{2}\ \text{cm} 3\ \text{cm} 3\dfrac{1}{2}\ \text{cm} 4\ \text{cm} \overline{AD} \overline{CD} \angle CDB \angle ADB \triangle ABD \triangle BCD \overline{AB} \overline{BC} ABCD=13\ \text{cm} (x-1)+(x-1)+(2x-3)+(2x-3)=13 x \qquad 6x-8=13 \quad\Rightarrow\quad x=\dfrac{7}{2}=3\dfrac{1}{2} \overline{AB}=x-1 \overline{AB}=2\dfrac{1}{2}\ \text{cm} per bottle. The grocery store is currently having a sale on lemonade which advertises bottles for only for , so the sale price is \sin(x^\circ) = 0.9 \cos(90^\circ-x^\circ) 0.45 0.90 1.12 1.96 90^\circ-x^\circ x^\circ ( 90^\circ) \sin(x^\circ) = \cos(90^\circ-x^\circ) \cos(90^\circ-x^\circ) = 0.9 \qquad\qquad 2006 2007 2008 2009 2010 2011 2012 2013 14.6 16.9 18.6 18.5 18.9 16.6 17.0 17.7 35{,}000 2006 2006 2007 2010 2006 2010 2011 2010 2006 2013 2006 2007 2006 2007 0.16 36 0.03 w 36 \dfrac{|w-0.16|}{36}=0.03 \dfrac{|w-5.76|}{36}=0.03 36|w-0.16|=0.03 36|w-5.76|=0.03 36 \qquad 36(0.16)=5.76 w w 36 \qquad |w-5.76| \qquad \dfrac{|w-5.76|}{36} 0.03 0.03 \qquad \dfrac{|w-5.76|}{36}=0.03 \qquad \dfrac{|w-5.76|}{36}=0.03 f(x)=-2\left(\dfrac{1}{3}\right)^x g(x)=2\left(\dfrac{1}{3}\right)^x xy (a,b) f g (a,b) (-a,b) (a,-b) (-a,-b) f(x)=-g(x) (x,y) f (x, -y) g (a,b) f (a,-b) g 1950 2013 \qquad f(x)=0.07x+2.34 x 1950 2040 \qquad\qquad\text{World population in billions of people}, f(x) \qquad\qquad\qquad\quad\qquad \text{Years since 1950}, (x) 5.2 2.34 1{,}252.29 8.64 \qquad f(x)=0.07x+2.34 x 1950 f(x) f(x) 2040 2040-1950=90 90 x f(90) 2040 8.64 \qquad\qquad\text{World population in billions of people}, f(x) \qquad\qquad\qquad\quad\qquad \text{Years since 1950}, (x) a^\circ+b^\circ 73^\circ a^\circ 180^\circ 180-107=73^\circ 180^\circ 180^\circ \qquad a^\circ+b^\circ+73^\circ=180^\circ a^\circ+b^\circ=107^\circ 1836 \qquad h(x) = -0.57x^2+7.98x h x 0.57\,\text{m} 7.98\,\text{m} 14\,\text{m} 28\,\text{m} x x (0,0) (14,0) 14\,\text{m} 14\,\text{m} x \angle QSR \angle RST 90^\circ m\angle QSR=\theta m\angle QST=90^\circ \green{m\angle RST=90^\circ-\theta} \sin\theta=\cos(90^\circ-\theta) x \overline{QR} \angle QSR QRS \theta \qquad\qquad \sin\theta=\dfrac{\text{Length of the side opposite from }\theta}{\text{Length of the triangle's hypotenuse}} \theta \qquad\qquad \cos\theta=\dfrac{\text{Length of the side adjacent to }\theta}{\text{Length of the triangle's hypotenuse}} QRS RST QRS QR=x \theta RS=6\sqrt2 \qquad\qquad \sin\theta=\dfrac{x}{6\sqrt2} RST RS=6\sqrt2 90^\circ-\theta ST=12 \qquad\qquad \cos(90^\circ-\theta)=\dfrac{6\sqrt2}{12} \sin\theta=\cos(90^\circ-\theta) \dfrac{x}{6\sqrt2}=\dfrac{6\sqrt2}{12} x 6 \qquad\dfrac{8c^2+2c^3}{2c^2-32} c>1 -\dfrac{c}{4} \dfrac{c^2}{c+4} \dfrac{c^2}{c-4} -\dfrac{c^2}{c-4} 8c^2+2c^3 2c^2 2c^2(4+c) 2c^2-32 2 2(c^2-16) 2(c^2-16) (c^2-16) \qquad 2(c+4)(c-4) \qquad \dfrac{2c^2(4+c)}{2(c+4)(c-4)} \dfrac{4+c}{c+4}=1 c 0 c\neq\purple{-4} c>0 \dfrac{c^2}{c-4} c>0 1050 490 70 7 8 14 15 70p p \qquad 450 + 70x < 1050 450 \qquad 70x < 600 70 \qquad x < 8.57 8.57 8 8 7 \qquad\dfrac{x^2}{x-2}+\dfrac{4}{2-x} x\neq2 x+2 x-2 \dfrac{x^2-4}{2-x} \dfrac{x^2+4}{x-2} -1 -1 \qquad \dfrac{x^2}{x-2}-\dfrac{4}{x-2}=\dfrac{x^2-4}{x-2} x 0 x\neq{\green{2}} \qquad x+2 xy x=3 y=0 y=\dfrac{1}{x+3} y=\dfrac{1}{x-3} y=\dfrac{1}{x}+3 y=\dfrac{1}{x}-3 y=\dfrac{a}{x-k}+h a k h k\neq x x=k y=h x=3 y=0 y=\dfrac{1}{x-3} y=\dfrac{1}{x-3} h 0 y=0 x=3 y=0 \qquad\qquad\qquad y=\dfrac{1}{x-3}\ 4\% 1984 2014 2014 15 1994 13 16 20 29 A(n) \text{million km}^2 n \qquad A(n)=A_0(0.96)^n A_0 1984 3 A(n)=15 \qquad A(3)=15 = A_0(0.96)^3\approx A_0(0.88) A_0 A_0\approx17.05 1984 17.05\,\text{million km}^2 1994 16\,\text{million km}^2. 16\,\text{million km}^2 \qquad\qquad 8 5 160 h 5 8 12 40 5 \qquad V=(\text{area of base})(5)=160 32 b h \dfrac 12 bh 8 \qquad 32=\dfrac12(8)h h=8 8 100 250 (\text{K}) 360 \, \text{K} T_I T_F T_I - T_F 5 0 -5 5 \qquad \dfrac{T_F}{250} = \dfrac{360}{T_F} T_F 5 p 15\,\text{ft}^2. 200\,\text{ft}^2 a a = 15(200 - p) a = 200 - (15 + p) a = 200p - 15 a = 200 - 15p 15p p 200 \qquad a=200-15p a = 200 - 15p (100^\circ \text C) 20^\circ \text C 60^\circ \text C 4 T t T(t)=20+80\cdot(0.84)^t T(t)=80+20\cdot(0.84)^t T(t)=80\cdot(0.84)^t T(t)=100\cdot(0.84)^t t=0 T(t) 100 \qquad T(t)=80\cdot(0.84)^t \qquad T(t)=100\cdot(0.84)^t t=0 t=0 t=4 \qquad T(t)=20+80\cdot(0.84)^t \qquad T(t)=20+80\cdot(0.84)^t and expects to sell increase in the price of the sneakers will lose the company , based on the number, , of \green A(x-\red h)^2+\blue k x=\red h \blue k R=\green{-750}(x-\red4)^2+\blue{192{,}000} x=\red 4 \green A \red4 increase over the original price of , or \qquad r=\sqrt{x^2+y^2} r (x,y) x y x = \sqrt{r^2}-y^2 x = \sqrt{r^2-y^2} x = \sqrt{r^2+y^2} x = r-y x^2+y^2 \purple{\text{square both sides of the equation}} \sqrt[2]{a}=\sqrt{a} x^2 \blue{\text{subtracting } y^2 \text{ from both sides of the equation}} x \red{\text{take the square root of both sides of the equation}} x \qquad x = \sqrt{r^2-y^2} 59 (^{\circ}F) 48.3^{\circ}F 3000 \text{ feet} (\text{ft}) T ^{\circ}F h 59^{\circ}F T(h)=59-3.6h T(h)=59-10.7h T(h)=59-0.0107h T(h)=59-0.0036h f(x)=mx+b m b 59^{\circ}F 10.7^{\circ}F 3000 \text{ ft} -\dfrac{10.7^{\circ}F}{3000\text{ ft}} -0.0036^{\circ}F \text{ per foot} \qquad T(h)=-0.0036h+59 T(h)=59-0.0036h h 59^{\circ}F \qquad(x^a)^b = x^{ab} \qquad\dfrac1{x^t}=x^{-t} \qquad 7^{3b} 4^{-3a} 7^{3b} 20\% x y 40\% 10\% x y 0.4x+0.1y=20 0.4x+0.1y=x+y 0.20(x+y)=x+y 0.2(x+y)=0.4x+0.1y \qquad[\text{amount of liquid}]\cdot [\text{percent juice}]=[\text{total amount of juice}] x 40\% 0.4x y 10\% 0.1y 0.4x+0.1y 20\% x+y 20\% 0.2(x+y) \qquad 0.4x+0.1y=0.2(x+y) x y \qquad 0.4x+0.1y=0.2(x+y) 48 (\text{ft}) 65\,\text{ft} x\,\text{ft} A(x) = (48 - x)(65 - x) A(x) = (48 - 2x)(65 - 2x) A(x) = (48 + x)(65 + x) A(x) = (48 + 2x)(65 + 2x) \qquad A(x) = (\text{lengh})(\text{width}) x \red{L} \red{W} \red{LW} \red{L} = 65 - 2x \red{W} = 48 - 2x \red{LW} = (65 - 2x) (48 - 2x) \qquad A(x) = (65 - 2x) (48 - 2x) \cos(210^{\circ}) -\dfrac{\sqrt{3}}{2} -\dfrac{1}{2} \dfrac{1}{2} \dfrac{\sqrt{3}}{2} \theta P P= (\cos{\theta}, \sin{\theta}) 210^{\circ} \left(-\dfrac{\sqrt{3}}{2},-\dfrac{1}{2}\right) x \cos{210^{\circ}}=-\dfrac{\sqrt{3}}{2} \qquad9x+3 =cx + 3+4x c c 5 9 6 7 \qquad \blue a x+\red b=\blue c x + \red d \blue a=\blue c \red b=\red d x \red 3 x \qquad \blue{c+4}=\blue{9} c=5 \qquad w=\sqrt{108w} w 0 w=0 w=108 w=\blue0 w=0 x = \blue{108} w=0 w=108 0+108=108 108 \qquad \qquad \qquad\qquad \text{World Production of Copper} c 1900 2010 t 1900 1995 0.5 9 11 13 t=95 c=11.2 1995 11 \qquad A = \dfrac{ \pi r^2 \theta }{ 360 } A r \theta r = \sqrt{\dfrac{360A}{\pi \theta}} r = \dfrac{360A}{ \pi r \theta} r = \sqrt{\dfrac{\pi \theta}{360A}} r = \dfrac{ \pi \theta}{360Ar} \blue{\text{multiply by } 360} \pink{\text{divide both sides by } \pi \theta} \qquad r = \sqrt{\dfrac{360A}{{\pi \theta}}} \qquad(a-4)(6a^2+10a-5) 6a^3-14a^2-45a+20 6a^3-14a^2-35a+20 16a^3-24a^2-45a+20 16a^3-24a^2-35a+20 (a-4) (6a^2+10a-5) \qquad a(6a^2) + a(10a)+a(-5)-4(6a^2)-4(10a)-4(-5) \qquad 6a^3 + 10a^2-5a-24a^2-40a+20 \qquad 6a^3-14a^2-45a+20 A \overline{AC} 8 \overline{AD} \overline{BC} E \overline{DE} 1 \overline{BC} 2\sqrt{15} 8 2\sqrt{17} 9 \overline{AB} \overline{AC} \overline{AD} 8 \overline{AE} AD - ED = 8 - 1 = 7 \overline{AD} \overline{BC} AEC E \qquad AE^2+CE^2 = AC^2 AC AE CE \overline{AC} \overline{AB} AEC AEB AEC AEB \qquad BE = CE = \sqrt{15} \overline{BC} BE CE \overline{BC} 2\sqrt{15} (x,y) y=x-7 (4,1) (9,6) (5,-2) (8,1) (5,-2) (9,6) (3,6) (8,1) y x x \qquad\qquad\qquad (x-6)^2-3=x-7 (x-6)^2-3=x-7 x=5 x=8 x x (5,-2) (8,1) (x,y) y=(x-6)^2-3 y=x-7 hm m h h 12 20 20 20 12 h (h,m) = (20, 0). 0 20 h = 20 20 \qquad Q=\sqrt{\dfrac{2KD}{F}} Q K D F D = \sqrt{ \dfrac{2FQ}{K}} D = \sqrt{\dfrac{FQ}{2K}} D = \dfrac{2FQ^2}{K} D = \dfrac{FQ^2}{2K} \purple{\text{squaring both sides of the equation}} \sqrt[2]{x}=\sqrt{x} F \blue{\text{multiplying both sides of the equation by } F} \green{\text{divide both sides of the equation by } 2\cdot K} \qquad D = \dfrac{FQ^2}{2K} \qquad 175 120 50 \pi\approx 3.14 \qquad V_{\text{cylinder}}+ V_{\text{cone}}\approx2{,}166{,}600 2{,}166{,}600 \qquad \dfrac{V_1}{T_1} = \dfrac{V_2}{T_2} V T (1) (2) T_1 = T_2 T_1 = V_1 - \dfrac{V_2}{T_2} T_1 = \dfrac{V_2}{T_2V_1} T_1 = \dfrac{T_2V_1}{V_2} T_1 \blue{\text{multiplying both sides by } T_1} \pink{\text{multiply both sides by } T_2} \green{\text{divide both sides by } V_2} \qquad T_1 = \dfrac{T_2V_1}{V_2} \qquad A(x)=8-\dfrac{1}{4}x B(x)=\dfrac{2}{5}-\dfrac{x}{16} A(x)-4B(x) -\dfrac{32}{5} \dfrac{32}{5} -\dfrac{32}{5}+\dfrac{1}{2}x \dfrac{32}{5}+\dfrac{1}{2}x \qquad A(x)-4B(x)=\left(8-\dfrac{1}{4}x\right)-4\left(\dfrac{2}{5}-\dfrac{x}{16}\right) -4 \qquad A(x)-4B(x)=\dfrac{32}{5} x -\dfrac{1}{2} + \dfrac{1}{4}x=10 \qquad 42 \dfrac{1}{2} <7ax+\dfrac{1}{4}<8 14ax+\dfrac{1}{2} 4 \dfrac{1}{4} \dfrac{1}{4} 4 16 1 1 16 \dfrac{1}{2} <7ax+\dfrac{1}{4}<8 14ax+\dfrac{1}{2} 14ax+\dfrac{1}{2}=2\left(7ax+\dfrac{1}{4}\right) 14ax+\dfrac{1}{2}=2\left(7ax+\dfrac{1}{4}\right) 14ax+\dfrac{1}{2} 2 aa x a b x<2 x>5 5 0.58\overline3 \green{20} 11.\overline6 12 \red{200+\text{ page books from the }20^\text{th}\text{ century}} \blue{\text{all books from the }20^\text{th}\text{ century}} \dfrac{\red x}{\blue{14}} \green{\text{books more than }200\text{ pages}} \purple{\text{all books}} \dfrac{\green{20}}{\purple{24}} 8\overline3\% \dfrac{\red x}{\blue{14}} 8\overline3\% \dfrac{\red x}{\blue{14}} > 0.8\overline3 \blue{14} 11.\overline6 12 200 20^\text{th} 12 13 14 \qquad V=\dfrac{s^2h}{3} h s 30\% 30\% \,69\% \,169\% \,300\% 30\% s 1.3s \qquad V=\dfrac{(1.3s)^2h}{3}=\dfrac{(1.69)s^2h}{3}=1.69\left(\dfrac{s^2h}{3}\right) 69\% 69\% O 1.4 AC 2.1 OB AC AOC l AC 2.8 \sin(0.75) 2.8 \cos(0.75) 1.4 \sin(1.5) 1.4 \cos(1.5) \qquad s = r \theta s r \theta s r \theta AOC 1.5 OB AOC BOC AOC \dfrac{1.5}{2} = 0.75 OBC BOC BC AO CO OBA OBC OB OBA OBC AB BC 1.4 \sin(0.75) AC 2(1.4 \sin(0.75)) = 2.8 \sin(0.75) \qquad F = P + Prt F t P r P = \dfrac{F}{1 + rt} P = \dfrac{F}{1 - rt} P = \dfrac{F + P}{rt} P = \dfrac{F - P}{rt} P \blue{\text{divide both sides by } (1 + rt)} \qquad P = \dfrac{F}{1 + rt} \qquad A(t) = t^2 - t - 30 B(t)=t-6 A(t)\cdot B(t) t^2+6t+180 t^2-30t+180 t^3-7t^2-24t+180 t^3-5t^2-36t+180 A(t) B(t) \qquad(t^2-t-30)(t-6) \qquad t^2(t)+t^2(-6)-t(t)-t(-6)-30(t)-30(-6) \qquad t^3-6t^2-t^2+6t-30t+180 \qquad t^3\blue{-6t^2}\blue{-t^2}\red{+6t}\red{-30t}+180 \qquad t^3\blue{-7t^2}\red{-24t}+180 \qquad t^3-7t^2-24t+180 \overline{DB} 6 (\text{ft}) \overline{AE} 20\,\text{ft} \sin(\theta) \approx 0.616 \cos(\theta) \approx 0.788 \overline{EC} 12.32\,\text{ft} 15.76\,\text{ft} 25.38\,\text{ft} 32.47\,\text{ft} \pi AEC AE 20 EC \overline{EC} 3b(b-4) 6(b-8) 3b(1-2b-16) 3b(b-2-16) 3(b^2-2b-16) 3(b^2-2-16b) \qquad3b(b-4) = 3b^2-12b \qquad6(b-8) = 6b-48 0 \qquad3b^2-6b-48 3 \qquad3(b^2-2b-16) JKL RST t^\circ 50^\circ 55^\circ 60^\circ 65^\circ q^\circ \overline{RT} 180 q^\circ 180 t^\circ t^\circ 60^\circ \qquad 1-9b^2=0 b=\pm\dfrac{1}{3} b=\pm\dfrac{1}{9} b=\dfrac{1}{3} b=\dfrac{1}{9} 0 \qquad (1-3b)(1+3b)=0 \qquad 1-3b=0 \qquad \text{or} \qquad 1+3b=0 b b=\dfrac{1}{3} b=-\dfrac{1}{3} b=\pm\dfrac{1}{3} \qquad\quad \left(2+\dfrac{1}{3}d\right)\cdot\left(5d+\dfrac{1}{3}d^2\right) \qquad =5d\left(2+\dfrac{1}{3}d\right)+\dfrac{1}{3}d^2\left(2+\dfrac{1}{3}d\right) \qquad =5d\cdot2+5d\cdot\dfrac{1}{3}d+\dfrac{1}{3}d^2\cdot 2+\dfrac{1}{3}d^2 \cdot \dfrac{1}{3}d \qquad =10d+\dfrac{5}{3}d^2+\dfrac{2}{3}d^2+\dfrac{1}{9}d^3 \qquad =10d+\left(\dfrac{5}{3}+\dfrac{2}{3}\right)d^2+\dfrac{1}{9}d^3 \qquad =10d+\dfrac{7}{3}d^2+\dfrac{1}{9}d^3 p\cdot p+p \qquad\quad\;\: p\cdot p+p \qquad=\left(\dfrac{1}{3}h\right) \cdot \left(\dfrac{1}{3}h\right) + \left(\dfrac{1}{3}h\right) \qquad =\dfrac{1}{3}h\cdot \dfrac{1}{3}h+ \dfrac{1}{3}h \cdot 1 \dfrac13h \qquad =\dfrac{1}{3}h\left(\dfrac{1}{3}h + 1\right) g(x)=8x-5 g(g(x)) 64x-10 64x-45 64x^2+25 64x^2-80x+25 g(g(x)) g(x) g \qquad g(g(x))=8(g(x))-5 g(x)=8x-5 g(g(x))=64x-45 2^{20} 2^{625} 32^2 32^{12} (a^m)^n=a^{mn} 32=2^5 32^4=\left(2^5\right)^4 (a^m)^n=a^{mn} 2^{20} 2^{20} (x,y) y x y (x,y) x 3 y \qquad y = \dfrac{-b\pm\sqrt{b^2-4ac} }{2a} ay^2+by+c=0 y \qquad y=\dfrac{3}{2} \qquad =\blue{u^2}(u+t)+\blue{2ut}(u+t)+\blue{t^2}(u+t) (u+t) u^3 t^3 3u^2t+3ut^2 \qquad 3u^2t+3ut^2=3ut(u+t) \qquad m^2+6m+10=0 i=\sqrt{-1} \text{I} \text{I} \text{II} \text{I} \text{III} \text{I} \text{II} \text{III} \qquad a=1,\qquad b=6,\qquad c=10 i=\sqrt{-1} \qquad m=-3+i, m=-3-i \text{I} \text{II} \qquad \text{I} \text{II} (x,y) x \ \ \ 50 -50 -5 \ \ \ 5 x y y \qquad\qquad\qquad y^2+25=10y y y=5 y x y x 50 70\% per share in . Knowing that such growth is not sustainable, the adviser makes a prediction for based on the average rate of change, which was per year. To the nearest dollar, how much higher would the financial adviser's prediction be for if the adviser assumed the earnings would continue to grow y 2011 and increase by , in a\cdot b^{\large{t}} a b t a and each year, then each year they are worth of their worth from the previous year. That is the same as multiplying the earnings by each year. So, in \qquad133-36=97 higher if the adviser assumed the earnings would continue to grow 9<15mx-8<27 m \dfrac{8}{3}-5mx -3 -9 -9 -3 -\dfrac{7}{3m} -\dfrac{17}{15m} -\dfrac{17}{15m} -\dfrac{7}{3m} 9<15mx-8<27 \dfrac{8}{3}-5mx \dfrac{8}{3}-5mx=\dfrac{15mx-8}{-3} \dfrac{8}{3}-5mx=\dfrac{15mx-8}{-3} \dfrac{8}{3}-5mx -3 aa x a b x<2 x>5 5x_2 x_1-x_2 -1 -\dfrac{1}{4} \dfrac{1}{2} 1 b^2-4ac x^2 21 -10x \qquad x^2-10x+21=(x-7)(x-3) \qquad x-7=0\qquad \text{or}\qquad x-3=0 x=7 x=3 x_1-x_2 x_1>x_2 x_1-x_2=4 2 40 7\text{ ft} 8\text{ ft} 16\text{ ft} 18\text{ ft} 2 a b A \qquad A=a \cdot b 40 \, \text{ft} b a \qquad b = 40 - a b {-1} a^2 y = a(x - h)^2 + k (h, k) 400 2^3=8 n+p n-p \left(\dfrac{2p-2n}4\right) 2 \left(\dfrac{p-n}2\right) \left(\dfrac{n-p}2\right) \qquad r=0.5(1.2)^{\theta} \theta x r 0.5 \qquad 0.5 2\pi 0.5 2\pi 0.5 \theta=0 0.5 \theta=2\pi \qquad r=0.5(1.2)^{\theta} \theta=0 \qquad r=0.5(1.2)^{0}=0.5 0.5 \theta=0 0.5 \theta=0 \dfrac{1}{3} \dfrac{1}{3} \dfrac{1}{2} 580 570 b g \dfrac{1}{2} \rightarrow \dfrac{1}{2}b \dfrac{1}{3} \rightarrow \dfrac{1}{3} g \qquad \dfrac{1}{2} b + \dfrac{1}{3} g = 580 \qquad \dfrac{1}{3}b + \dfrac{1}{2}g = 570 2f \dfrac f2 D P D 2D 20 260 300 13.2 9.5 1.5 10 6 6 10 14 11 11 14 20 13.2 1.5 13.2 \cdot 1.5 260 10 6 (x_1,y_1) (x_2,y_2) y_1 y_2 x y (x,y) y y x x_1=5 x_2=8 x y x_1=5 x_2=8 x_1=5 x_2=8 (5,65) (8,74) y y_1+y_2 \qquad74+65=139 hats. If Aiden purchases only t-shirts, he will get t-shirts. Which of the following best models the relationship between the number of hats, , and the number of t-shirts, 40h+80t=400 80h+40t=200 5h+2.5t=200 2.5h+5t=200 [\text{cost per hat}]\cdot [\text{number of hats}]+[\text{cost per t-shirt}]\cdot [\text{number of t-shirts}]=[\text{total cost}] on hats, he will get hats. Therefore, we can divide by to see that each hat costs on t-shirts, he will get t-shirts. Dividing by shows us that each t-shirt costs \qquad 5h+2.5t=200 5h+2.5t=200 h t 60^\circ 67 (\text{in}) 33.5\sqrt{3}\,\text{in} 33.5\sqrt{2}\,\text{in} 33.5\,\text{in} \dfrac{134\sqrt{3}}{3}\,\text{in} 30^\circ-60^\circ-90^\circ 67 60^\circ h 33.5\sqrt{3}\,\text{in} 6 50\% 6 11\,\text{p.m.} 20\,\text{mg} 2\,\text{oz} 80\,\text{mg} 5\,\text{a.m.} 11\,\text{a.m.} 11{:}30\,\text{a.m.} 12\,\text{p.m.} C(h) h \qquad C(h)=80\cdot(0.50)^{\large\frac h6} \,5\,\text{a.m.} h=18 \qquad C(18)=80\cdot(0.50)^{\large\frac {18}6}=10\,\text{mg} 2 (h=12) C(h)=20 12 11{:}30\,\text{a.m.} 12\,\text{p.m.} h=12 11\,\text{a.m.} 11\,\text{a.m.} \qquad \sqrt {y+k}=y+1 k y=1 y=\red1 k 3 \qquad \sqrt {y+3}=y+1 0 y=1 y=-2 y=\green1 y=1 y=\green{-2} y=-2 y=1 k=3 y=1 \qquad 1\,\text{T} = 1 \dfrac{\text{Wb}}{\text{m}^2} P 6 \cdot 10^6 1 10^6 6 \cdot 10^{-6} 6 \cdot 10^0 6 \cdot 10^{12} 6 \cdot 10^{18} 6 \cdot 10^6 S \dfrac{\text{Wb}}{\text{m}^2} \text{M} 1{,}000{,}000 10^6 S 6 \cdot 10^{-6} \qquad\dfrac{-7}{9-20p} = \dfrac{3}{4} p -\dfrac{12}{11} -\dfrac{11}{12} \quad \dfrac{11}{12} \quad\dfrac{12}{11} \qquad(-7)(4) = (3)(9-20p) \qquad -28 = 27 - 60p p \qquad\dfrac{11}{12} = p \qquad p = \dfrac{11}{12} \qquad \qquad \qquad \qquad \quad \text{ Online Radio Trends} 2007 2015 P t 2007 t P P=t+20 P=2.3t+20 P=0.23t+18 P=4.3t+18 y=mx+b m (0,b) y y P P (0, 18) (0, 18) (3,30) P P=mt+b P=4t+18 P=4.3t+18 t P P=4.3t+18 12 1 (\text{in}) 4 (\text{hrs}) 4\ \text{in} 480 500 560 600 4 12 240 12 480 \qquad240+240=480 4 \qquad\dfrac{240\ \text{min}}{12\ \text{in}} = \dfrac{x}{4\ \text{in}} 80 4 \qquad x=\dfrac{4\times240}{12}=80 480+80=560 \dfrac13 x (\text{cm}) s \dfrac13 a=\dfrac s3 b=\dfrac{2s}{3} 30\,\text{cm} 12\,\text{cm} f(x)=2x+3 g(x)=x^2-4x g(f(x)) 4x^2+4x-3 4x^2-8x-3 4x^2+4x+21 2x^2-8x+3 g(f(x)) f(x) g \qquad g(f(x))=(f(x))^2-4(f(x)) f(x)=2x+3 g(f(x))=4x^2+4x-3 0 0.00 0.00 0.00 5 0.25 0.27 0.28 10 0.50 0.54 0.56 15 0.75 0.81 0.83 20 1.00 1.08 1.11 25 1.25 1.35 1.39 110\text{ in}:3\text{ in} 9 (\text{in}) 28 37 330 3{,}960 110\text{ in }{:}\:3 \text{ in } 9 l \qquad \dfrac{110\text{ in} }{3\text{ in} }=\dfrac{l}{9\text{ in}} l 12 1 12 \qquad\dfrac{330}{12}=27.5\approx28 28 -7 \qquad\quad 4^2(20k) \qquad=4^2\cdot20k \qquad=20k \cdot 4^2 \qquad 20k\cdot4^2 - 7 \qquad \dfrac{5+7i}{6-3i} i=\sqrt{-1} \dfrac{9+57i}{45} \dfrac{9+57i}{3} \dfrac{51+57i}{45} \dfrac{51+57i}{3} \green{\text{complex conjugate}} a+bi a-bi 6-3i \qquad 6-(-3i)=\green{6+3i} \blue{\text{ identity}} i=\sqrt{-1} i^2=-1 \qquad\dfrac{9+57i}{45} 400 ? 286 350 290 5 325 299 \qquad i^3 + i^2 i=\sqrt{-1} -1 -2 -1 + i -1 - i i^2 = -1 \qquad -1-i \qquad T = \dfrac{(d - 15)^2}{300} + 20 T d 1 \qquad T = a(d - d_0)^2+T_0 a (d_0, T_0) (d, T) = (15, 20) 20 20 24 c a 24 24 \qquad a + c \leq 24 c a a c \qquad a \leq c \qquad xy \text{I} \text{II} \text{I} \text{III} \text{I} \text{II} \text{III} 2 x 2 \text{II} y=(x-4)^2 2 x ( 1 3) y=(x-3)(x+3) 3 -3 \text{I} y=(x+2)(x+7) -2 -7 \text{III} \text{I} ( \text s) ( \text {ft}) 1 90 3 730 (\text{ft}) t h(t) = at^2 + c 2 a c (t, h) = (1 \, \text{s}, 90 \, \text{ft}) (t,h) = (3, 730) {-1} c , and plugging that into and equal and 2 t 2 330 2 \qquad A = 4 \pi r^2 A r 8{,}000 (\text{mi}) 10 \text{ mi} 64{,}000{,}000 \pi 160{,}000{,}000 \pi 640{,}000{,}000 \pi 2{,}560{,}000{,}000 \pi V A t \qquad V = At \qquad A = 4 \pi r^2 A r A V \qquad V = 4 \pi r^2t t 10 \text{ mi} 2 \, \dfrac{8{,}000}{2} = 4{,}000 \text{ mi} t r 640{,}000{,}000 \pi \text{ mi}^3 \qquad {\sqrt{4p^7q^2 + p^4q^2}} p q {2\sqrt{p^{11}q^4}} {2q\sqrt{p^7+p^4}} { p^2 q \sqrt{4p^3 + 1} } \qquad \sqrt{xy} = \sqrt{x} \sqrt{y} \qquad { \sqrt{x^{{2}}} = x \, , \, x > 0} \qquad {\sqrt{4p^7q^2 + p^4q^2} = p^2q\sqrt{4p^3+1}} \qquad R = \dfrac{C - P}{P} R C P R = C - 1 P = C - R - 1 P = \dfrac C R +1 P = \dfrac{C}{R+1} P \blue{\text{multiplying both sides by } P} P \green{\text{denominator}} P \pink{ \text{adding } P \text{ to both sides}} P \gray{ \text{divide both sides by } (R+1) } \qquad P = \dfrac{C}{R+1} 1{,}830 \text{(mi)} 605 \text{ mi} x 1727 \text{ mi} (x,y) x y -2 -1 0 x + y x y x 2y+1 x y y y = -1 x (x, y) = (-1, -1) x+y \qquad -1 + (-1) = -2 x y -2 \overline{WY} 6 4\sqrt3 16 16\sqrt2 \angle WXY=90^\circ \angle WXZ=45^\circ \angle ZXY 90^\circ-45^\circ = 45^\circ \overline{WX} \overline{WY} x y 180^\circ x \overline{WX} WXZ \theta \qquad\qquad \cos\theta=\dfrac{\red{\text{Length of the side adjacent to }\theta}}{\blue{\text{Length of the triangle's hypotenuse}}} WXZ \angle WXZ=45^\circ \red{\overline{XZ}} \red{\text{{adjacent}}} \angle{WXZ} \red{8} \blue{\overline{WX}} \blue{\text{{hypotenuse}}} WXZ \blue{x} \qquad\qquad \cos45^\circ=\dfrac{\red{8}}{\blue{x}} \cos45^\circ \dfrac{\sqrt2}2 \overline{WX} y \overline{WY} WXY WXY m\angle YWX=45^\circ {\overline{WX}} \angle{YWX} 8\sqrt2 \overline{WY} WXY y \qquad\qquad \cos45^\circ=\dfrac{8\sqrt2}{y} \overline{WY} 16 12{,}000 97\% 90\% 2.4\% 88\% 92\% 96\% 100\% 90\% 97\%\pm2.4\% \qquad97-2.4=96.6 \qquad97+2.4=99.4 96.6\% 99.4\% 96\% \qquad\dfrac{5m^2+7m}{2m-9}-\dfrac{2m}{2m-9} \dfrac{3m^2+7m}{2m-9} \dfrac{5m^2+5m}{2m-9} \dfrac{5m+9m}{2m-9} \dfrac{5m^2+7m-1}{2m-9} \qquad \dfrac{5m^2+7m-2m}{2m-9} \qquad \dfrac{5m^2+5m}{2m-9} 7260 1200 acre square feet (\text{ft}^2) \text{length}\times \text{width} \qquad 7260\text{ ft}\times1200 \text{ ft}=8{,}712{,}000 \text{ ft}^2 43{,}560:1 a 8{,}712{,}000 \qquad \dfrac{43{,}560\text{ ft}^2}{1 \text{ acre}}=\dfrac{8{,}712{,}000\text{ ft}^2}{a\text{ acres}} a \qquad\left(x-4\right)\left(x-5\right)=0 x=s x=t |s-t| -9 -1 1 9 \left(x-4\right)\left(x-5\right)=0 \left(x-4\right)=0 \left(x-5\right)=0 x=4 x=5 s=4 t=5 |s-t| |s-t| 1 \qquad \left( \dfrac{3}{4} \right) ^{1.5} \cdot \left( \dfrac{2}{3} \right)^{2.5} 3^{-3.75} \cdot 2^{-7.5} \dfrac{1}{16} \dfrac{1}{3\sqrt{2}} \qquad \left( \dfrac{x}{y} \right)^m = \dfrac{x^m}{y^m} \qquad \left( \dfrac{3}{4} \right) ^{1.5} \cdot \left( \dfrac{2}{3} \right)^{2.5} = \dfrac{3^{1.5}}{4^{1.5}} \cdot \dfrac{2^{2.5}}{3^{2.5}} \qquad { \dfrac{1}{x^m} = x^{-m}} \qquad { \dfrac{3^{1.5}}{4^{1.5}} \cdot \dfrac{2^{2.5}}{3^{2.5}} = 3^{1.5} \cdot 4^{-1.5}\cdot 2^{2.5} \cdot 3^{-2.5}} \qquad { x^m \cdot x^n = x^{m+n}} \space \space { \left(x^m\right)^n = x^{mn}} \qquad { \left( \dfrac{3}{4} \right) ^{1.5} \cdot \left( \dfrac{2}{3} \right)^{2.5} = \dfrac{1}{3\sqrt{2}}} 1{,}594\,\dfrac{\text{kJ}}{\text{h}} 2{,}726\,\dfrac{\text{kJ}}{\text{h}} 77\,\dfrac{\text{L}}{\text{h}} 130\,\dfrac{\text{L}}{\text{h}} 49\,\dfrac{\text{g}}{\text{h}} r 55 r 27 \,\dfrac{\text{g}}{\text{h}} 29 \,\dfrac{\text{g}}{\text{h}} 83 \,\dfrac{\text{g}}{\text{h}} 85 \,\dfrac{\text{g}}{\text{h}} 1{,}594:2{,}726 77:130 49:r r r r r r 49 130 77 83 \,\dfrac{\text{g}}{\text{h}} ta 8 a t 8 156 184 0.93 1.08 26 28 8 \dfrac{a_2-a_1}{t_2-t_1} \qquad\dfrac{96-70}{184-156}=\dfrac{26}{28}\approx0.93 8 {0.93} 156 184 9{,}000 3{,}600 147{,}000 12{,}600 58{,}800 159{,}600 367{,}500 \green d 58{,}800 \qquad3(t+1)=-\dfrac12-5t t=-\dfrac7{16} t=-\dfrac74 t \red{5t} \green 3 t=-\dfrac7{16} t=-\dfrac7{16} (t) \qquad a t+ b= c t+ d a\ne c t=-\dfrac7{16} t=-\dfrac7{16} \qquad 3 \qquad 1280\,\text{m} \qquad h(x)=0.000371(x-640)^2 x \qquad 0.000371x^2-0.47488x+151.9616 0.000371(x^2-1280x+409{,}600) 0.000371((x-600)^2-80x+49{,}600) 0.000371((x-650)^2+20x-12{,}900) \qquad ax^2+bx+c c x=0 \qquad 0.000371x^2-0.47488x+151.9616 1.67 2:1 per gallon for the Glyphosate in the weed killer and charges per gallon for the other ingredients in the weed killer, then, rounded to the nearest cent, how much does the manufacturer charge for the 2{:}1 (\text{gal}) g 1.67 \qquad\dfrac{2\text{ total gal of weed killer}}{1 \text{ gal of Glyphosate}}=\dfrac{1.67\text{ total gal of weed killer}}{g\text{ gal of Glyphosate}} g \qquad g=0.835\text{ gal of Glyphosate} 0.835 1.67 1.67-0.835=0.835 0.835 per gallon of Glyphosate, then it charges gallons of other ingredients and the manufacturer charges per gallon of the other ingredients, then it charges for the \qquad x^2+\dfrac{13}2x+\dfrac{15}2=0 x=a x=b ab -15 -\dfrac{15}2 \dfrac{15}2 15 a b x^2+\dfrac{13}2x+\dfrac{15}2 (x-a)(x-b) ab \dfrac{15}2 ab ab \dfrac{15}2 P 30 2\pi 3\pi 5\pi 10\pi \qquad 5\pi a(x+b)^2 = 3x^2+36x+c c 3 6 36 108 \qquad a(x+b)^2 = 3x^2+36x+c 3 a 3 3 \qquad (x+b)^2=x^2+12x+\dfrac{c}{3} \left(\dfrac{1}{2}(12)\right)^2 \dfrac{c}{3} 36 \dfrac {c}{3}=36 c=108 \qquad \sqrt{x^2-4x+4}=0 x x=2 2 \qquad 243p^{36m}-75q^{16n} 3(9p^{6m}+5q^{4n})(9p^{6m}-5q^{4n}) 3(9p^{18m}+5q^{8n})(9p^{18m}-5q^{8n}) 3(9p^{6m}+5q^{4n})\cdot 3(9p^{6m}-5q^{4n}) 3(9p^{18m}+5q^{8n})\cdot3(9p^{18m}-5q^{8n}) 3 \qquad 243p^{36m}-75q^{16n}=3\left(81p^{36m}-25q^{16n}\right) \sqrt{p^{36m}}=p^{18m} p^{18m}\cdot p^{18m}=p^{36m} \sqrt{q^{16n}}=q^{8n} q^{8n}\cdot q^{8n}=q^{16n} 243p^{36m}-75q^{16n} \qquad 3(9p^{18m}+5q^{8n})(9p^{18m}-5q^{8n}) 3 (\text{in}) 2.5\text{ in} 2\text{ in} \qquad V_\text{cube} = s^3 V_\text{cube} s \qquad V_\text{prism} = lwh V_\text{prism} l w h s l w h s w h l l s w h 5.4\text{ in} (x,y) (-4,10) (3,3) (4,2) (-3,9) (4,-3) (-4,3) y x x y=x^2-2x-6 y y+x=6 x \qquad\qquad\qquad x^2-2x-6=-x+6 x=4 x=-3 x x (4,2) (-3,9) that he will put toward the trip. To save more money for the trip, Felipe gets a job where each month he can add to his savings for the trip. Let be the number of months that Felipe has worked at his new job. If Felipe needs to save 250m-350=2700 250m+350=2700 350m-250=2700 350m+250=2700 for *each* month that he works. We can represent this with the expression , and we do not need to multiply by \qquad350m+250=2700 U 1 h t U = 9.8h U t 1 2 2 h \qquad U = 9.8(2) = 19.6\; U U 19.6 \qquad\dfrac{x}{x-1} + \dfrac{4}{x-2} = \dfrac{4}{(x-1)(x-2)} x -4 -2 1 2 \qquad\dfrac{x^2-2x}{x^2 -3x +2} + \dfrac{4x-4}{x^2 -3x +2} = \dfrac{4}{x^2 -3x +2} \qquad\dfrac{x^2+2x-4}{x^2 -3x +2} = \dfrac{4}{x^2 -3x +2} \qquad x^2+2x-4 = 4 4 \qquad x^2+2x-8 = 0 \qquad (x + 4) (x - 2)=0 x -4 2 x=2 x x -4 k x y y \qquad -\dfrac{3.2}{k} = -1.6 k=2 y k 2 ( | Profit in hundreds of | | , corresponding to hundred dollars spent on advertising last month. It is determined that the profit can be modeled by a quadratic function of the form . If P(20) **spent on advertising**. Before we can do this, we have to build our quadratic function by finding and (10, 450) (40, 240) P(x) = c + bx - 0.5x^2 c {-1} b c c b P(20) 20 ( is spent on advertising, a profit of hundreds or (\text{cm}) 1{,}019\,\text{cm} 1{,}089\,\text{cm} 1{,}105\,\text{cm} 1{,}120\,\text{cm} \purple{\text{slant height}} \red{\text{pyramid height}} \purple{\text{slant height}} 80\,\text{cm} 40\,\text{cm} \purple{\text{slant height}} \red{\text{pyramid height}} 40\,\text{cm} \red{70\,\text{cm}} \green{\text{slant height}} \pink {\text{height}} \qquad \dfrac{290\,\text{cm}-80\,\text{cm}}{2}=105\,\text{cm} \green{\text{slant height}} \pink{\text{height}} 105\,\text{cm} \qquad\red{70}+\pink {1{,}019}=1{,}089 1{,}089\,\text{cm} - - l s 40 l=2s+1 l=1+2s 40 l+s=40 l l \qquad (1+2s)+s = 40 \qquad 1+3s = 40 1 \qquad 3s=39 3 \qquad s=13 13 13 l \qquad l+ \: s \: =40 \qquad l+13=40 \qquad l=27 27 30 \qquad \qquad\qquad\qquad \text{Online Course Enrollment} n 2002 2011 t 2002 2002 2011 130{,}000 580{,}000 1{,}725{,}000 58{,}000{,}000 (2, 2.5) (4.5, 4) m=\dfrac{0.6}{1}=\dfrac{\Delta n}{\Delta t} 0.6 0.6 600{,}000 580{,}000 2002 2011 580{,}000 \qquad6=-s+77 1+5(77-s) -739 -29 31 741 31 10\text{ ft} 5 \text{ ft} x y 3 \text{ ft} y=3(x-5)^2+10 y=-3(x-5)^2+10 y=\dfrac{7}{25}(x-5)^2+10 y=-\dfrac{7}{25}(x-5)^2+10 y y=a(x-h)^2+k (h,k) 10 \text{ ft} 5 \text{ ft} (5,10) \qquad y=a(x-5)^2+10 a 3 \text { ft} (0,3) a a \qquad y=-\dfrac{7}{25}(x-5)^2+10 6 \text{(mi)} 14{,}000 \text{(ft)} 5{,}280 1 14{,}000 \text{ ft} 4 d 7 \text{ mi} 7 (\text{ft}) 5\text{ ft} V h A V=Ah A \dfrac12 sh_{\small{\triangle}} s h_{\small{\triangle}} \dfrac{\sqrt3}{2}s 5\text{ ft} 7\text{ ft} 76\text{ ft}^3 3 4 h w h = \dfrac{4}{3}w h = 3w h = 4w h = 12w 4 3 12 12 w w h = 12w 5 -3 \dfrac{9}{11} (x-5)(x+3)(11x-9) (x+5)(x-3)(11x+9) (x-5)(x+3)(9x-11) (x+5)(x-3)(9x+11) 0 \blue5 \red{-3} \blue{x-5} \red{x+3} \green{11x-9} \qquad\blue{(x-5)}\red{(x+3)}\green{(11x-9)} \qquad 2x^2+5x-k=0 k k -\dfrac{25}{8} -\dfrac{5}{4} \:\:\:\dfrac{5}{4} \:\:\dfrac{25}{8} b^2-4ac k 0 \qquad 25+8k=0 k k=-\dfrac{25}{8} xy 14 99 \qquad -21 \qquad x^2-ax+24 8 0 8 a a \qquad x^2-11x+24=\blue{(x-3)}\red{(x-8)} x \blue3 \red8 \blue3 4 0.12 30 m d d=4-0.12m d=4+0.12m d=4-0.004m d=4+0.004m 30 0.12\text{ GB} \;\dfrac{0.12\text{ GB}}{30\text{ minutes}}\; 0.004 \text{ GB per minute} [\text{GB remaining}]=[\text{initial GB}]-[\text{GB used per min}]\cdot [\text{no. of mins}] 4\text{ GB} m \qquad d(m)=4-0.004m d(m)=4-0.004m \qquad\qquad H = \dfrac{kA\ \Delta T}{ L} H kA \Delta T L kA = \dfrac{\Delta T}{HL} kA = \dfrac{HL}{\Delta T} kA = HL\ \Delta T kA = \dfrac{H\ \Delta T}{L} L \blue{\text{multiplying both sides of the equation by } L} \green{\text{divide both sides of the equation by } \Delta T} \qquad kA = \dfrac{HL}{\Delta T} l =30 (\text{cm}) t = 1 \text{ cm} d = 4 \text{ cm} 120 \pi 150 \pi 270 \pi 600 \pi \qquad V = \pi r^2 h V r h 4\text{ cm} 1 + 4 + 1 = 6\text{ cm} 2\text{ cm} 3\text{ cm} l 30\text{ cm} \qquad V_\text{inner} = \pi (2)^2(30)= 120 \pi \qquad V_\text{outer} = \pi (3)^2(30)= 270 \pi \qquad V_\text{pipe} = 270 \pi - 120 \pi = 150 \pi 150 \pi \text{ cm}^3 320 \dfrac{1}{4} p c p = 80c p = 160c p = 240c p = 320c \dfrac{1}{4} \dfrac{3}{4} \dfrac{3}{4} 320 240 240c \qquad p=240c p = 240c \qquad (6+\sqrt{3})^2 15 39 39+12\sqrt{3} 45+12\sqrt{3} \qquad (6+\sqrt{3})^2=(6+\sqrt{3})\cdot (6+\sqrt{3}) \qquad 39+12\sqrt{3} 50\% 6 64\ \text{mg} 3 12 16\ \text{mg} 32\ \text{mg} 48\ \text{mg} 96\ \text{mg} \qquad 3 \times 64 \text{ mg}=192 \text{ mg} 6 50\% \qquad 0.50 \times 192 \text{ mg} = 96 \text{ mg} 12 6 12 50\% 6 \qquad 0.50 \times 96 \text{ mg} = 48 \text{ mg} 2 per hour and the second job pays hours, but she needs to make at least hours at the first job and 40 a b 40 (0,40) (40,0) b , and she must make *at least* b \qquad i(7-3i) i=\sqrt{-1} 4i 10i 7i-3 7i+3 i^2=-1 \qquad 7i+3 12 \qquad S= I\cdot t - (r+p)\cdot t\ S t I r p I>r+p I r p S t I\cdot t (r+p)\cdot t I r p m \qquad m=I-(r+p) I>(r+p) S \qquad\dfrac{3w}{w+4} - \dfrac{8}{w} = 1 \qquad 2(w-8)(w+2) = 0 \qquad w = 8 w = -2 w = 8 w = 8 w = -2 w = -2 8 + (-2) = 6 \qquad \left(x^{\left({4^6}\right)}\right) ^ {\left(4^1\right)} s t s+t \qquad\quad \left(x^{\left({\large{4^6}}\right)}\right) ^ {\left(\large{4^1}\right)} \left(x^a\right)^b = x^{ab} 4^6\cdot4^1 k^a\cdot k^b = k^{a+b} s+t 7 24 (\text{in}) 15\text{ in} 12\text{ in} 900 \qquad V = lwh 2.5\text{ in} 2.5\text{ in} 35 (\text{ft}) 195\text{ ft} 21 24 25 29 35\text{ ft} 35+4s s 195\text{ ft} 35+4s=195 40\text{ ft} 20\% 30\% to buy a ball. This weekend, Suraj is planning to use balls at Roycefield and balls at Hunterdon. If he only has 5 10 15 20 14 b 14 \leq b , and therefore the cost of b b=15 70 (\text{cm}) 20\,\text{cm} 40\,\text{cm} (\text{ms}) x 0\leq x\leq70 0.2 12\,\text{cm} 28\,\text{cm} 19.2\,\text{cm} 20.8\,\text{cm} 32\,\text{cm} 48\,\text{cm} 39.2\,\text{cm} 40.8\,\text{cm} \qquad | x - 20| 0.2 \qquad 40\dfrac{\text{cm}}{\text{ms}}(0.2\,\text{ms})=8\,\text{cm} \qquad x=12 x=28 12\,\text{cm} 28\,\text{cm} when the operator guessed 105 115 105 125 115 125 115 135 5 120 \quad |x-120| = 5 c m c(m)=\dfrac{3}{2}\left(0.5^{60m}-1\right) c(m)=\dfrac{3}{2}\left(1.2^{60m}-1\right) \blue{A}\cdot \red{B}^{\green {\large x}} \red B \green x 1 \green x 1 \red B 60 \dfrac{6}{6} {\left(x^ {\large y}\right)^{\large z}=x^{{\large y}\cdot {\large z}}} \red{729} (2,5) (5,2) (-2,4) (-4,2) (-2, 4) (2.1,4.9) (-2,4) (2,5) (-2,4) (-2,4) (2,5) (2,5) (-2,4) (x_1,y_1) (x_2,y_2) y_1+y_2 x y (x,y) y y=4x+2 x x \qquad x = \dfrac{-b\pm\sqrt{b^2-4ac} }{2a} ax^2+bx+c=0 x_1=\dfrac{5}{3}\, x_2=-\dfrac{1}{2} x y x x_1=\dfrac{5}{3} x_2=-\dfrac{1}{2} y y_1+y_2 \dfrac{26}{3} a^m\cdot a^n=a^{m+n} x y x y 90 60 480 1 2 S c 90 90 c 90 S=480 c=60 m c 1 S 2 S 2 S 2 x \dfrac{9}{25} \dfrac{3}{5} 0 \dfrac{9}{25} 0 \dfrac35 2 0 0 x 0 \dfrac{9}{25} \qquad 16x^4-81 (4x^3-9)(4x+9) (2x-3)(2x+3)(4x^2-9) (2x-3)(2x+3)(4x^2+9) (2x-3)^4 a^2-b^2 (a-b)(a+b) 16x^4 81 16x^4-81 \qquad 16x^4-81=(4x^2-9)(4x^2+9) (4x^2-9) \qquad (4x^2-9)(4x^2+9)=(2x-3)(2x+3)(4x^2+9) 16x^4-81 \qquad (2x-3)(2x+3)(4x^2+9) \qquad\dfrac{\sqrt{75x^4}}{\sqrt{12x^7}} \dfrac{5x\sqrt{3x}}{6} \dfrac{5\sqrt{3x}}{6x^2} \dfrac{5}{2\sqrt{x}} \dfrac{5\sqrt x}{2x^2} \purple{\text{power of a quotient}} \qquad \left(\dfrac xy\right)^a=\dfrac{x^a}{y^a} \sqrt{25}=5 \qquad\dfrac{5}{2x\sqrt x} \dfrac{\sqrt x}{\sqrt x} \qquad\dfrac{5\sqrt x}{2x^2} \qquad x^2 + y^2 + z^2 = R^2 3 3 (x,y,z) R y x z R y = R-x-z y = \sqrt{R - x - z} y = \sqrt{R^2 - x^2 - z^2} y = \dfrac{R^2 - x^2 - z^2}{y} y^2 \pink{\text{subtracting } x^2 \text{ and } y^2} \qquad y = \sqrt{R^2 -x^2 - z^2} -8-8y=6-2y y y=-\dfrac37 y=\dfrac37 y=\dfrac73 y=-\dfrac73 \red{2y} \blue{8} \green{-\dfrac16} y=\pink{-\dfrac73} y=\pink{-\dfrac73} (y) \qquad ay+ b= c y + d a\ne c y=-\dfrac73 y=-\dfrac73 2009 2013 r 2010 billion, and in , it was approximately represents years since , which of the following best models the print advertising revenue obtained by U.S. newspapers from to f(t)=22.8-0.55t f(t)=23.4-0.55t f(t)=22.8-1.83t f(t)=24.6-1.83t t=0 2009 (t, f(t)) \qquad P_1=(1, 22.8) \text{ and } P_2=(4, 17.3) 2009 2013 1.83 y=mx+b f(t)=-1.83t+b b 2009 t f(t) b f(t)=-1.83t+24.6 f(t)=24.6-1.83t 2009 2013 x>5 \qquad\dfrac{x^2-x-6}{x^2+6x-27} \cdot \dfrac{4x-32}{x^2+11x+18} 4x-32 \dfrac{4x-32}{{x^2+81}} \dfrac{(x+2)^2}{4x-32} \dfrac{4x-32}{{(x+9)}^2} \qquad \dfrac{(x-3)(x+2)}{(x-3)(x+9)} \cdot \dfrac{4(x-8)}{(x+2)(x+9)} x 0 x\neq{\green{-2},\pink{ 3}} x>5 \qquad \dfrac{4x-32}{(x+9)^2} \qquad \dfrac{1+2i}{1-2i}\div\dfrac{1-2i}{1+2i} i=\sqrt{-1} 1 -1 -\dfrac{7}{25}+\dfrac{24}{25}i -\dfrac{7}{25}-\dfrac{24}{25}i a+bi a b -3+4i \qquad \dfrac{1+2i}{1-2i}\div\dfrac{1-2i}{1+2i}=-\dfrac{7}{25}-\dfrac{24}{25}i \qquad (x+3)(x-5)=5 x=-3 x=5 x=2 x=10 x=1- 2\sqrt{5} x=1+ 2\sqrt{5} x=1- \sqrt{21} x=1+ \sqrt{21} x^2 1 x x \qquad x^2-2x=20 1 \qquad x^2-2x+1=20+1 x=1+\sqrt{21} x=1-\sqrt{21} (-5, b) b (-5, 1) (-2,4) (-5,1) (-5,1) x -5 b=1 10 3.5 and an hour job would cost . If the construction company completes a job in one day, which of the following functions best models the cost, , in dollars, for an c(h)=50h c(h)=60h c(h)=50h+75 c(h)=60h+10 c h \left(h, c(h)\right) \qquad P_1=(3.5, 250) \qquad \text{ and} \qquad P_2=(8, 475) y=mx+b c(h)=50h+b b c h b c(h)=50h+75 h t (1 =\,52 ) 1-0.25^{26} 1.25^{26}-1 26\cdot0.25 26\cdot1.25 26 52 \dfrac{26}{26} {\left(x^{\large y}\right)^{\large z}=x^{{\large y}\cdot {\large z}}} 1 1.25^{26} 100\% 1 \qquad\green{1.25^{26}-1}\approx329.87 \green{1.25^{26}-1} 1^{\text{st}} 2014 . Each year the value of the bond increases linearly by . Which graph below represents , the dollar value of the bond, as a function of , the number of years after January , 0 , so the -intercept is each year at a linear rate. Therefore, the slope of with respect to is \qquad v = 1000 + 75t t = 6 v (0, 1000) (6, 1450) x 10 15 1.15\left(\dfrac{x}{10}\right) 0.85\left(\dfrac{x}{10}\right) 0.15\left(\dfrac{x}{10}\right) 1.15x \qquad 1.15\left(\dfrac{x}{10}\right) 3.60 \times 10^7 3{,}030 439.82 9.29 \times 10^7 7{,}921 288.15 | | | | | | [\text{Mar's distance}] : [\text{Saturn's distance}] 4:25 [\text{Mar's distance}] \approx 1.42 \times 10^8 [\text{Earth's distance}] : [\text{Mar's distance}] \dfrac{[\text{Earth's distance}]}{[\text{Mar's distance}]} \approx \dfrac{[9.29\times10^7]}{[1.42\times10^8]} \approx 0.65 \left( \dfrac23 , \dfrac32, \dfrac49, \dfrac94 \right) 0.65 2:3 0.0084\% 0.0086\% 2.79 \cdot 10^9 0.887 \cdot 10^9 \qquad 1.9 \cdot 10^9 2:3 1.9 \cdot 10^9 P \approx R(6.7 \times 10^{21}) \qquad \qquad \qquad \qquad \text{North Dakota Population} p 2000 2014 t 2000 p=0.78(t-2.8)^2+638.4 p=0.78(t+2.8)^2+638.4 p=0.78(t-638.4)^2+2.8 p=0.78(t+638.4)^2+2.8 y=a(x-h)^2+k (h,k) (3, 638) p=0.78(t-2.8)^2+638.4 (3,638) a (8, 660) p=0.88(t-3)^2+638 p=0.78(t-2.8)^2+638.4 \qquad \dfrac{2}{3}x^2-\dfrac{1}{2}x-\dfrac{3}{4}=0 x_1 x_2 x_1+x_2 -\dfrac{3}{2} -\dfrac{3}{4} 0 \dfrac{3}{4} 12 8x^2-6x-9=0 b^2-4ac 8x^2 -9 -6x \qquad 8x^2-6x-9=(4x+3)(2x-3) \qquad 4x+3=0\qquad \text{or}\qquad2x-3=0 x=-\dfrac{3}{4} x=\dfrac{3}{2} x_1+x_2= \dfrac{3}{4} x f(x) g(x) 1 2 2 2 3 2 3 5 1 5 6 4 f(g(2))? -3 -6 2 1 f(g(2)) g(2) f g(2) 2 f(g(2)) = f(2) 3 3 p(x) = (x-a)(x-15)(x-20)+15 a p(7)=15 a 7 a \qquad P = a \cdot (1+b)^{kt} P t a b k P P k > 0 P a > 1 P k > 0 P a > 1 \qquad f(x) = A \cdot C^x A > 0 C > 0 C < 1 C > 1 \qquad P = a \cdot ((1+b)^k)^t A = a C = (1+b)^k C > 1 (1+b)^k > 1 b b > 0 1 \qquad 1 + b > 1 (1+b)^k 1 k (1+b)^k 1 k k C > 1 P k > 0 \qquad\qquad x \angle YXZ \angle WXY 90^\circ \angle YXZ=\theta \angle WXZ=90^\circ \green{\angle WXY=90^\circ-\theta} \cos\theta=\sin(90^\circ-\theta) x \overline{XY} WXY \theta XYZ \theta \qquad\qquad \cos\theta=\dfrac{\text{Length of the side adjacent to }\theta}{\text{Length of the triangle's hypotenuse}} \theta \qquad\qquad \sin\theta=\dfrac{\text{Length of the side opposite from }\theta}{\text{Length of the triangle's hypotenuse}} WXY XYZ XYZ \overline{XY} \theta XY=x \overline{XZ} XZ=49 \qquad\qquad \cos\theta^\circ=\dfrac{x}{49} WXY \overline{WY} 90^\circ-\theta WY=36 \overline{XY} XY=x \qquad\qquad \sin(90^\circ-\theta^\circ)=\dfrac{36}{x} \cos\theta=\sin(90^\circ-\theta) \dfrac{x}{49}=\dfrac{36}{x} x 42 \qquad R(q)=-0.31(q-260)^2+18{,}500 R(q) q \qquad R(q)=-0.31(q-260)^2+18{,}500 (260,18{,}500) \qquad 4(2+3p)-2(1+3p)\geq32 p \leq -\dfrac{23}3 p \geq \dfrac{11}3 p \geq \dfrac{13}3 p\geq-\dfrac32 \:\:\:\: \text{or} \:\:\:\: p\geq-\dfrac13 \purple4 \pink{-2} \blue6 \gray6 p \geq \dfrac{13}3 246{,}400 25 61{,}600 p 25p+61{,}600\ge246{,}400 25p+61{,}600\le246{,}400 25p-61{,}600\ge246{,}400 25p-61{,}600\le246{,}400 25 61{,}600 25p-61{,}600 246{,}400 \qquad25p-61{,}600\ge246{,}400 \qquad25p-61{,}600\ge246{,}40 xy \left(44,-34\right) \sqrt3 \left(x+34\right)^2+\left(y-44\right)^2=3 \left(x+34\right)^2+\left(y-44\right)^2=\sqrt3 \left(x-44\right)^2+\left(y+34\right)^2=3 \left(x-44\right)^2+\left(y+34\right)^2=\sqrt 3 (\green h,\purple k) \red r \qquad (x-\green h)^2+(y-\purple k)^2=\red r^2 \left(\green{44},\purple{-34}\right) \red {\sqrt3} \qquad \left(x-\green{44}\right)^2+\left(y-\left(\purple{-34}\right)\right)^2=(\red {\sqrt 3})^2 \qquad \left(x-44\right)^2+\left(y+34\right)^2=3 \qquad \left(x-44\right)^2+\left(y+34\right)^2=3 50 \text{(yd)} 12\text{ yd} 50-12 d 45.5 60 90 72 21 24 25 29 60 90 1.5 60+1.5t t 72 \qquad 60+1.5t=72 8 \qquad \qquad \qquad \qquad \text{Dial-up Internet Trends} P t 2005 2005 2012 P=30(0.7)^t P=30(1.5)^t P=-30(0.7)^t P=-30(1.5)^t y=a\cdot b^x a y b>0 a>0 00 b>1 P=-30(0.7)^t P=-30(1.5)^t -30 P=30(1.5)^t P=30(0.7)^t (4,7) (5,5) P=a\cdot b^t a a=\dfrac{7}{b^4} \dfrac{7}{b^4} a b b=0.71 7=a(0.71)^4 a P=28(0.71)^t P=30(0.7)^t 2005 2012 td d t 2 0 0 0 \qquad \quad\qquad \left[(9f+9)+(9f+9+1)\right]\cdot f \qquad =\left[9f+9+9f+9+1\right]\cdot f \qquad =\left[9f+9f+9+9+1\right]\cdot f \qquad =\left[18f+19\right]\cdot f f \qquad =18f^2+19f \qquad A = t^2+5.8t+9.41 A t 1 2011 t 1 2014 1 2014 1 (t - (-2.9))^2 + 1 (t - (-1))^2 + 3.8t + 8.41 (t - (-3.9))(t - (-1.9)) + 2 t(t - (-5.8)) + 9.41 t -2.9 1 1 \qquad A = (t + 2.9)^2 + 1 10\large\frac{1}{2} 3 1.5 x 3+1.5x<10.5 3+1.5x\leq10.5 3x+1.5<10.5 3x+1.5\leq10.5 3 1.5 3+1.5x 10.5 10.5 10.5 (\leq) \qquad3+1.5x\leq10.5 \qquad3+1.5x\leq10.5 \qquad a=\dfrac{5bc}{20}+10 b a c b=\dfrac{4a}{c}-200 b=\dfrac{4a-40}{c} b=\dfrac{4a}{c}-10 b=\dfrac{4a+40}{c} \green{\text{subtracting } 10 \text{ from both sides of the equation}} \dfrac{5bc}{20} \red{\text{multiply}} \red{\text{by }20} \red{20} b \blue{\text{dividing by }5c} \qquad b=\dfrac{4a-40}{c} \qquad\sqrt{2x^2 +7} +5 = 0 0 1 2 2 5 x 2 x = 3 x=3 x = -3 x = -3 0 1{,}500 25 399 635{,}000 25 9{,}500 39{,}000 127{,}000 169{,}000 \green d 169{,}000 25 w w(x) = ax^2+bx+c a b c a=3 w(3)=w(15)=0 b w(3)=0 w(15)=0 w h(x) w(x) = 3x^2+bx+c 2 h(x)=k k=3 -k \cdot 18 = b 3 b 54 \qquad 256a^4-1 (4a-1)^4 (16a-1)(16a^3+1) (4a-1)(4a+1)(16a^2-1) (4a-1)(4a+1)(16a^2+1) x^2-y^2 (x-y)(x+y) 256a^4 1 256a^4-1 \qquad 256a^4-1=(16a^2-1)(16a^2+1) (16a^2-1) \qquad (16a^2-1)(16a^2+1)=(4a-1)(4a+1)(16a^2+1) 256a^4-1 \qquad (4a-1)(4a+1)(16a^2+1) 2005 3.8\ \text{billion} 1\ \text{billion} 118\ \text{billion} 152\ \text{billion} 380\ \text{billion} 3.8\ \text{billion} 1\% 380 31\% 118 \quad 31\% 380 = 0.31\times380\approx117.8 118 hv v h 8.5 9 v = 9 9 9 \qquad f(x)=-g(x)-7 g f g x 7 g 7 x g y 7 g 7 y f g(x)\rightarrow -g(x) g x -g(x)\rightarrow -g(x)-7 7 g f g x 7 \qquad \dfrac{2n^3m}{5\ell^2} - \dfrac{5n^3m}{7\ell^2} \ell < -2 \dfrac{7n^3m }{35\ell^2} \dfrac{-3n^3m }{35\ell^2} \dfrac{-11n^3m }{35\ell^2} \dfrac{-10n^6m^2 }{35\ell^4} 35\ell^2 \purple{\dfrac{7}{7}} \pink{\dfrac{5}{5}} \qquad \dfrac{14n^3m - 25n^3m}{35\ell^2} \quad = \quad \dfrac{-11n^3m }{35\ell^2} \qquad \dfrac{-11n^3m }{35\ell^2} xy x y 7 10 40 48 y=0 x x (40,0) x 40 40 5 6 11 2 10 12 6 11 17 13 27 40 40 \dfrac{3}{20} \dfrac{2}{9} \dfrac{3}{5} \dfrac{6}{11} \purple6 5 \purple6 \green{11} 2 10 12 6 11 17 13 {27} 40 \green{11} \dfrac{\purple6}{\green{11}} \dfrac{6}{11} \qquad \qquad \qquad \qquad \qquad \text{Online Sales Revenue} R 2004 2014 t 2004 2004 2014 2\% 3\% 10\% 30\% \qquad (0, 7), (1, 9), (2, 11), (3, 15), (4, 19) (t, R) t 2004 2004 7 2005 9 2006 11 2007 15 2008 19 \qquad \dfrac{9}{7}\approx 1.3 \qquad \dfrac{11}{9}\approx 1.2 \qquad \dfrac{15}{11}\approx 1.4 \qquad \dfrac{19}{15}\approx 1.3 1.3 130\% 30\% 30\% \dfrac{12}{13} \approx \tan(42.7^\circ) \approx \sin(67.4^\circ) \approx \cos(22.6^\circ) \alpha 180^\circ \dfrac{12}{13} \approx \cos(22.6^\circ) \alpha 23 \qquad5(v-3)=6v+2 v=17 v=-17 v=5 v=-5 v \red {5v} \blue{2} v=\pink{-17} v=\pink{-17} (v) \qquad av+ b= cv + d a\ne c v=-17 v=-17 \qquad \qquad \quad \text{Average New Home Sale Prices in the US} p 2003 2009 t 2003 each year between and 3 in 2003 (3.5,310) (t, p) t 2003 p 2006 in 14{:}00 12{:}00 8{:}00 7{:}00 12.5\% 14.3\% 14.3\% 16.7\% 14.3\% 12.5\% 16.7\% 14.3\% 14.3\% \qquad \dfrac{12-14}{14}=- \dfrac{2}{14}\approx- 0.1429 \qquad\Rightarrow\quad 14.3\% 12.5\% \quad \dfrac{7-8}{8}=-\dfrac{1}{8}=-0.125 \qquad\Rightarrow\quad 12.5\% 14.3\% 12.5\% y=\dfrac{1}{6}(x+12) xy y=\dfrac{1}{6}x+3 12y=2x+3 x+6y=18 y y=\dfrac{1}{6}x+12 y=\dfrac{1}{6}(x+12) \dfrac{1}{6} \dfrac{1}{6} y 2 y=\dfrac{1}{6}x+3 y=\dfrac{1}{6}x+3 y=\dfrac{1}{6}x+2 12y=2x+3 12y=2x+3 y=mx+b y=\dfrac{1}{6}x+\dfrac{1}{4} y=\dfrac{1}{6}x+3 12y=2x+3 1970 1990 101 41 25 60 53 55 57 59 x 1970 x 1970 y 1970 101 1990 1970 20 y 1970 25 1990 1970 20 x 1970 16 x 53 14 x 2 y 3 30 2 14 \qquad x+y=14 2x 3y \qquad 2x+3y=30 2 x \qquad -y=-2 \qquad y=2 \qquad x+2=14 \qquad x=12 12 \qquad C=1.2272M+3.0556F C M F M=\dfrac{C-3.0556F}{1.2272} M=\dfrac{C}{1.2272}-3.0556F M=\dfrac{3.0556F-C}{1.2272} M=\dfrac{3.0556F}{1.2272}-C M \red{\text{subtract }3.0556F} \green{\text{divide by}} M \green{1.2272} \qquad M=\dfrac{C-3.0556F}{1.2272} \qquad A(x)=\dfrac{1}{2}x^2-\dfrac{1}{3}x-7 B(x)=\dfrac{3}{2}-\dfrac{2}{3}x-7x^2 A(x) B(x) -\dfrac{7}{2}x^2+\dfrac{2}{9}x-\dfrac{21}{2} -6.5x^2-x-5.5 2x^2-x-14 7.5x^2-x-8.5 \qquad \left(\dfrac{1}{2}x^2-\dfrac{1}{3}x-7\right)+\left(\dfrac{3}{2}-\dfrac{2}{3}x-7x^2\right) A(x) B(x) A(x) B(x) \qquad -6.5x^2-x-5.5 \qquad E=\dfrac{A-V}{A} E A V V=A-EA A=-V(E-1) A=V(E-1) A=\dfrac{V}{1-E} A=\dfrac{V}{E-1} A \red{\text{multiplying by }A} A \blue{\text{subtracting }A} A \green{\text{divide by }E-1} \purple{\text{multiplying by the identity }\dfrac{-1}{-1}} \qquad A=\dfrac{V}{1-E} . Fake mustaches cost each, and party hats cost each. If he must purchase a combination of at least mustaches and party hats, which of the following systems of inequalities best models the relationship between the number of mustaches, , and party hats, \text{\red{at most}} . Since fake mustaches cost apiece and party hats cost apiece, we can set up the following \text{\blue{at least}} 15 m p m+p \text{\blue{greater than or equal}} 15 \qquad m+p \blue{\geq} 15 she earned from her summer job into an account and will use it to pay for school expenses. She withdraws of the remaining balance each month to pay for part of her living expenses. Which of the following functions models the balance, , of Wyatt's money (in dollars) B(t)=450\cdot(1.1)^t B(t)=450\cdot(0.9)^t B(t)=450+1.1t B(t)=450-0.9t 10\% 90\% \qquad B(1)=450\cdot(0.9) 2 t \qquad B(t)=450\cdot(0.9)^t \qquad B(t)=450\cdot(0.9)^t \dfrac{1}{2}+\dfrac25s=s-\dfrac34 s s=\dfrac3{4} s=\dfrac{25}{12} s=-\dfrac{25}{12} s=-\dfrac34 \red s \blue{\dfrac12} \green{-\dfrac53} s=\pink{\dfrac{25}{12}} s=\pink{\dfrac{25}{12}} (s) \qquad as+ b= c s + d a\ne c s=\dfrac{25}{12} s=\dfrac{25}{12} \qquad \dfrac{3}{2+i} i=\sqrt{-1} 2-i 2+i \dfrac{6+3i}{5} \dfrac{6-3i}{5} i 2+i 2-i \dfrac{2-i}{2-i} i^2=-1 \qquad \dfrac{6-3i}{5} hd d h 35 35 35 35 2 0 3 \green{\text{home}} \red{\text{work}} \purple{\text{supermarket}} \green{\text{home}} 8.5 16 35 35 \qquad V(m) - V(m-1) = 622 V(m) m m V(m) \qquad V(m) = V(m-1)+622 m 622 (a,b) b<0 a x y (a,b) y y x x x x=3 x=-2 y x y x=3 x=-2 (3,-9) (-2,36) (a,b) b<0 (3,-9) a a=3 \qquad 3+5x=\sqrt{k+6x} k x=0 x=\red0 k 9 \qquad 3+5x=\sqrt{9+6x} 0 x=0 x=-\dfrac{24}{25} x=\green0 x=0 x=\green{-\dfrac{24}{25}}\, x=-\dfrac{24}{25} x=0 k=9 x=0 2008 211 150 2009 163 125 2008 2009 2008 2009 17\% 22\% 26\% 38\% 2008 150-211=-61\ \text{billion dollars} 2009 125-163=-38\ \text{billion dollars} 2008 2009 2008 2009 2008 \Large \frac{-61-(-38)}{-61}=\Large \frac{-23}{-61}\approx0.38=38\% 38\% 2008 2009 \qquad 4(80+n) = (3k)n k k \qquad\;\, 4(80+n) = (3k)n n n ( 1=0) \qquad 4\cdot80+4n = (3k)n 4n=(3k)n 4=3k k k=\dfrac43 n \qquad\qquad\: 4\cdot80 = 0 k=\dfrac43 k=\dfrac43 2008 . For each year before or after , the average price per square foot increased by . Which of the following equations below could be used to determine in which year, , the price per square foot was 2.75|y-2008|=126 115+2.75|y-2008|=126 2.75|y-126|=2008 115-2.75|y-126|=2008 y 2008 y \qquad 2.75|y-2008| 115 \qquad 115+2.75|y-2008| 126 \qquad 115+2.75|y-2008|=126 \qquad 115+2.75|y-2008|=126 16 2 10 13 14 16 m t m t t m \, m \, \, \dfrac{m}{2} \qquad t \ge \dfrac{m}{2} \qquad t \le 16 - m t \space 16 - m \space m m 2 m 2 14 t \space \dfrac{m}{2} \space \space \dfrac{m}{2} \space m m 2 1 \qquad 14 - 1 = 13 18 3{,}300 30{,}000 26 1{,}131 1{,}280 1{,}633 1{,}665 \red{\text{unloaded truck}} \blue{\text{cargo}} \red{30{,}000} w \blue{26w} \qquad\red{30{,}000}+\blue{26w} 18 \qquad18(3{,}300)=\purple{59{,}400} \purple{59{,}400} w 1{,}131 \qquad 16B + 3.5W = 22 22 B W 16B 16B 16B 16B 16B \blue{22 \text{ miles long}} \qquad 16B + 3.5W = \blue{22} B 16B 16B 10 \text{ cm} 500 \text { cm}^3 4\text{ cm} 8\text{ cm} 12.5\text{ cm} 15.9\text{ cm} \qquad V=\pi r^2h \qquad 500=10\pi r^2 r 10\pi r\approx\pm4 4\text{ cm} \qquad P(x)=3x^2+4x-5 Q(x)=7x^3-2x-5 P(x)-Q(x) -7x^3+3x^2+6x -7x^3+3x^2+6x - 10 -4x^2+6x -4x^2+6x-10 0\text{s} 0 0 y^2+2y=15+x (x,y) y =\dfrac{1}{2}x+3 (-12,1) (0,3) (-12,-3) (0,-5) (-12,-3) (0,3) (-12,1) (0,-5) y=\dfrac{1}{2}x+3 (0,3) y m=\dfrac{1}{2} 1 2 (0,3) y=\dfrac{1}{2} x+3\, (0,3) (-12,-3) x y \left(0,3\right) \left(-12,-3\right) (-12,-3) (0,3) \qquad (8-2i)^2(8+2i) i=\sqrt{-1} 60 68 480 - 120i 544-136i \qquad (8-2i)(8-2i)(8+2i)=(8-2i)(64-4i^2) i=\sqrt{-1} i^2=-1 \qquad 544-136i x 8\sqrt3 16 16\sqrt2 32 ABC \overline{AC} ABC ACD \theta \qquad\qquad \tan\theta=\dfrac{\red{\text{Length of the side opposite from }\theta}}{\blue{\text{Length of the side adjacent to }\theta}} ABC \angle B=30^\circ \red{\overline{AC}} \red{\text{{opposite}}} \angle B \blue{\overline{AB}} \blue{\text{{adjacent}}} \angle B \blue{16\sqrt3} \red y \red{\overline{AC}} \qquad\qquad \tan30^\circ=\dfrac{\red{y}}{\blue{16\sqrt3}} \tan30^\circ \dfrac{\sqrt3}{3} 180^\circ x \overline{DC} ACD \theta \qquad\qquad \sin\theta=\dfrac{\red{\text{Length of the side opposite from }\theta}}{\green{\text{Length of the triangle's hypotenuse}}} ACD \angle D=45^\circ \red{\overline{AC}} \red{\text{{opposite}}} D \red{16} \green{\overline{DC}} \green{\text{{hypotenuse}}} ADC \green{x} \qquad\qquad \sin45^\circ=\dfrac{\red{16}}{\green{x}} \sin45^\circ \dfrac{\sqrt2}{2} x 16\sqrt2 ds s d s 25 25 25 25 0 s (d, s)=(0, 25) 25 0 0 s 25 2700 (\text{ft}^3) 25\text{ ft}^3 1 10\% 44\% 56\% 93\% 25\text{ ft}^3 60 1 1500 \text { ft}^3 1 x 1 \qquad \dfrac {x}{100} = \dfrac{1500}{2700} \qquad x 56 56\% 1 x \angle is and CBD 27^\circ \angle must be \sin(\angle , so since ABD = 63^\circ \sin63^\circ = \dfrac{x}{10} \sin63^\circ = 0.89 0.89 = \dfrac{x}{10} x 8.9 0.89 10 \qquad Q(x)=\dfrac{P(2x)}{2} Q P y = P(x) y = Q(x) y = P(x) y = Q(x) y = P(x) x 2 y \dfrac{1}{2} y = P(x) x \dfrac{1}{2} y \dfrac{1}{2} y = P(x) x \dfrac{1}{2} y 2 f(x) = a \cdot g(bx) y = f(x) y = g(x) x \dfrac{1}{b} y a a = \dfrac{1}{2} b = 2 Q P \dfrac{1}{2} Q P \dfrac{1}{2} x \dfrac{1}{2} y \qquad f(x)=-0.12x+24.91 -20 \qquad\qquad \qquad \text{Water temperature in degrees Celsius}, f(x) \qquad\qquad\qquad\quad \text{Water depth in meters}, (x) 27.31 24.91 374.25 210 \qquad f(x)=-0.12x+24.91 x f(x) x -20 -20 f(x) x 374.25 -20 \qquad\qquad \qquad \text{Water temperature in degrees Celsius}, f(x) \qquad\qquad\qquad\quad \text{Water depth in meters}, (x) (x,y) x y -1 1 \dfrac{13}{6} xy x y y y x \qquad y = -\dfrac{1}{12} +\dfrac{1}{2}x y x (x, y) = \left( \dfrac{3}{2}, \dfrac{2}{3} \right) xy \qquad \left( \dfrac{3}{2} \right) \left( \dfrac{2}{3} \right) = 1 2001 2012 40\% 40\% 11:18 3:1 27.2\% 27.8\% 37.1\% 37.9\% \qquad \text{percentage} = \dfrac{\text{part}}{\text{total}} \cdot 100\% \qquad P_w = \dfrac{\text{densely vegetated land in west}}{\text{total land in west}} \cdot 100\% \qquad P_w = \dfrac{\text{11 parts}}{\text{11 parts + 18 parts}} \cdot 100\% \qquad P_w = \dfrac{\text{11 parts}}{\text{(11 + 18) parts}} \cdot 100\% \qquad P_w = \dfrac{11}{29} \cdot 100\% \qquad P_w = 0.379310345... \cdot 100\% \qquad P_w = 37.9310345...\cdot\% \qquad P_w \approx 37.9\% \qquad P_c = 75\% \qquad P_c - P_w \qquad \approx 75\% - 37.9\% \qquad = 37.1\% 37.1\% \qquad\left(4s^2t\right)^3 + \left(p-3\right) \left(4^3s^{23}t^3\right) + \left(p-3\right) \left(p-3\right) + \left(4s^2t^3\right) \left(12s^2t\right) + \left(p-3\right) \left(p-3\right) + \left(64s^6t^3\right) (p-3) 3 \left(4s^2t\right)^3 \left(4s^2t\right)^3 3 \qquad\left(p-3\right) + \left(64s^6t^3\right) \qquad\dfrac{2x}{x+3} - \dfrac{4}{x-2} = -3 x -2 1 3 5 \qquad\dfrac{2x\blue{(x-2)}}{(x+3)\blue{(x-2)}} - \dfrac{4\pink{(x+3)}}{\pink{(x+3)}(x-2)} = -3 \qquad 2x^2 -8x -12 = -3(x^2 + x - 6) \qquad 2x^2 -8x -12 = -3x^2 -3x + 18 \qquad 5x^2 - 5x - 30 = 0 5 \qquad 5(x^2 - x - 6) = 0 \qquad 5(x-3)(x+2) \qquad x = -2 \qquad x = 3 x -3 2 x \qquad -2 + 3 = 1 1 3 4 2 6 8 5 7 12 8 16 24 \dfrac{3}{16} \dfrac{1}{8} \dfrac{1}{2} \dfrac{3}{4} \green4 1 \blue3 \green4 2 6 8 5 7 12 8 16 24 \blue3 \dfrac{\blue3}{\green4} 3 4 46 5 15:184 10:69 69:10 184:15 3 4 \qquad r:b = 3:4 \qquad \dfrac{r}b = \dfrac34 46 5 \qquad \dfrac{l}s = \dfrac{46}5 l s 1 \qquad 1:\dfrac{69}{10} 10 \qquad 10:69 10:69 \qquad\qquad\text{ Average monthly temperature in Chicago, IL}, \ f(x) \qquad\qquad\qquad\qquad\text{Months of the year during 2013, } (x) 2013 f(x)=-1.67x^2-23.04x-2.86 f(x)=-1.67x^2+23.04x-2.86 f(x)=1.67x^2-23.04x-2.86 f(x)=1.67x^2+23.04x-2.86 ( 1) ( 7) ( 8) ( 12) f(x)=ax^2+bx+c a,b c a<0 \qquad f(x)=-1.67x^2-23.04x-2.86\qquad \qquad f(x)=-1.67x^2+23.04x-2.86 a \qquad f(x)=-1.67x^2-23.04x-2.86\qquad \qquad f(x)=-1.67x^2+23.04x-2.86 a c a y c b x=\dfrac{-b\ \ }{2a} x=6.9 \qquad f(x)=-1.67x^2+23.04x-2.86 \qquad\qquad\text{ Average monthly temperature in Chicago, IL}, \ f(x) \qquad\qquad\qquad\qquad\text{Months of the year during 2013, } (x) 2014 (22) 22 22 \dfrac{0\cdot5+1\cdot2+2\cdot2+3\cdot4+4\cdot1+5\cdot1+8\cdot1+10\cdot1+12\cdot1+16\cdot2+20\cdot1+22\cdot1}{22} 22 \qquad\dfrac{109}{21}=5.\overline{190476}\approx5 (a,b) b-a 0 1 2 3 a b a b a=-5b=0 (0,0) b-a=0-0=0 p t (t-10) (22-t) (t+10) (20+t) p(t) y=p(t) ty p(t) y=p(t) t t t t 14 \text{ mm} 10 \text{ mm} 132 \text{ mm} d 10d+14\leq132 14d+20\leq132 20d+14\leq132 14d+10\leq132 {14\,\text{mm}} {20\,\text{mm}} d {14}d+{20} \qquad{14}d+{20}\leq{132} \qquad{14}d+{20}\leq{132} 0 1 2 (0, 0) 1 x<0 \qquad\dfrac{x^2+2x-63}{x^2-49} \dfrac{x-9}{x-7} \dfrac{x+9}{x+7} \dfrac{2x-63}{49} \dfrac{2x-63}{-49} (x+9)(x-7) x^2-49 \qquad (x+7)(x-7) \qquad \dfrac{(x+9)(x-7)}{(x+7)(x-7)} x 0 x\neq\purple7 x<0 \dfrac{x+9}{x+7} x<0 ABCD EFGH d^\circ = f^\circ d^\circ = g^\circ d^\circ = 90^\circ - g^\circ d^\circ = 180^\circ - f^\circ 4 \quad \:\:\:ABCD \qquad\qquad\qquad \:\:\:\:\: EFGH d^\circ d^\circ = b^\circ b^\circ = f^\circ d^\circ = f^\circ xy (3,4) (5,0) (-5,0) (4,3) y={2^{x-1}} x^2+y^2=25 (3,4) 3 x 4 y (-5,0) y={2^{x-1}} y=0 y 0 (-5,0) -5 x 0 y (3,4) \quad 30 13-16 17-20 16 16 16 16 16 16 AFG ABC \angle AGF 102^\circ \angle AFG=65^\circ 180^\circ \angle AGF=x \qquad x+37^\circ+65^\circ=180^\circ 180^\circ x x=78^\circ \angle AGF=78^\circ 3 (\text{in}) 216\text{ in}^3 \qquad V = lwh V l w h h l w \qquad A = lw A lw \qquad V = Ah 72 \text{ in}^2 f g g(f(2)) -6 -2 0 2 g(f(2)) f(2) f(2) f x=2 f(2)=0 0 f(2) \qquad g(f(2)) = g(0) g(0) g(0) g x=0 g(0)=-6 g(f(2))=g(0) = -6 1 \qquad { \dfrac{1}{x} = x^{-1}} \qquad { \left(x^m\right)^n = x^{mn}} \qquad x^mx^n = x^{m+n} \:\: x \quad \sqrt{x} \:\: 1 \quad 1 \:\: 2 \quad 1.414 \ldots \:\: 3 \quad 1.732 \ldots \:\: 4 \quad 2 \:\: 5 \quad 2.236 \ldots \qquad x^2 - x - 1 = 0 \qquad (x + \text{[ ? ]} )(x - \text{[ ? ]} ) = x^2 - x - 1 ax^2 + bx + c = 0 2 x \qquad x = \dfrac{-b \pm \sqrt{b^2 - 4ac} }{2a} x^2 - x - 1 = 0 a = 1 b = {-1} c = {-1} x^2 - x - 1 = 0 x = 1.618 \ldots 1.62 xy (11,12) (13,14) x^2+y^2-22x+24y=-257 x^2+y^2+22x-24y=-257 x^2+y^2+22x+24y=-257 x^2+y^2-22x-24y=-257 (\green h,\purple k) \red r \qquad (x-\green h)^2+(y-\purple k)^2=\red r^2 (\green{11},\purple{12}) \qquad (x-\green{11})^2+(y-\purple{12})^2=\red r^2 (13,14) (x,y) \red r^2 \qquad (x-11)^2+(y-12)^2=8 \qquad x^2+y^2-22x-24y=-257 m>1 n>1 \qquad \dfrac{49m^4n-21m^6n^2}{7m^2n^4} 7m^2n^4-3m^4n^2 7m^2n^3-3m^4n^2 \dfrac{7m^2-3m^3}{n^2} \dfrac{7m^2-3m^4n}{n^3} 7m^4n(7-3m^2n) \qquad \dfrac{7\cdot m\cdot m\cdot m\cdot m\cdot n(7-3m^2n)}{7\cdot m\cdot m \cdot n \cdot n \cdot n \cdot n} \dfrac{7m^2-3m^4}{n^3} m>1 n>1 \dfrac{3}{\sqrt{5}} \dfrac{3\sqrt{5}}{5} \dfrac{3\sqrt{5}}{25} \dfrac{\sqrt{15}}{5} \dfrac{\sqrt{15}}{25} \sqrt{5} \dfrac{3}{\sqrt{5}}\; \dfrac{3\sqrt{5}}{5} 2 30 1 3 3 C x 30 C=ax^2+bx 6 6 9 15 18 x 30 C (2,1) (3,3) C=ax^2+bx -3 2 b \qquad3=6a \qquad \qquad a=\dfrac{1}{2} a b a=\dfrac{1}{2} b=-\dfrac{1}{2} \qquad C=\dfrac{1}{2}x^2-\dfrac{1}{2}x 6 x C C=15 15 6 \qquad(p+1)^2 - 2^2 \qquad a^2 - b^2 = (a+b)(a-b) a=p+1 b=2 \qquad(p+1)^2 - 2^2 = (p+1+2)(p+1-2) tv v t \quad \text{\red{first half}} \text{\green{second half}} \qquad \text{\red{first half}} \text{\green{second half}} \qquad v t \qquad a(x) = \left(\dfrac89 x^2+\dfrac{15}9 x\right) b(x) = \left(\dfrac 23 x^2+4x\right) a(x)-b(x) \dfrac x9 (6x-21) \qquad\quad a(x)-b(x) a(x) b(x) \qquad =\left(\dfrac89 x^2+\dfrac{15}9 x\right)- \left(\dfrac 23 x^2+4x\right) \qquad =\left(\dfrac89 x^2+\dfrac{15}9 x\right)+\left(\left(-\dfrac 23\right) x^2+(-4)x\right) \qquad =\dfrac89 x^2+\dfrac{15}9 x+\left(-\dfrac 23\right) x^2+(-4)x \qquad =\dfrac89 x^2+\left(-\dfrac 23\right) x^2+\dfrac{15}9 x+(-4)x \qquad =\left(\dfrac89-\dfrac 23\right) x^2+\left(\dfrac{15}9 -4\right)x \dfrac x9 \qquad =\dfrac x9\left(2 x-21\right) c s a(s) a(s) s a(s) = c \cdot \left[1 - \left(\dfrac12\right)^{\large s} \right] a(s) = c \cdot \left[ 1 - \left(\dfrac1s\right)^2 \right] a(s) = c \cdot \left(\dfrac12\right)^{\large s} a(s) = c \cdot \left(\dfrac1s\right)^2 c(s) \qquad c(s) = c \left(\dfrac12\right)^{\large s} s \quad s c a(s) c(s) a(s) s c -\dfrac{x}{3.5} + \dfrac{y}{12.5} = 1 xy 12.5 (3.5, 12.5) x y x y 12.5 (3.5, 12.5) (3.5, 12.5) x 0 y x y 0 x y 0 y 0 x x y for the first mile, for each of the next miles, and miles f(m) = 2.05 + 1.56(m-4) f(m) = 2.05 + 2.78(m-4) f(m) = 3.61 + 1.22(m-4) f(m) = 6.73 + 1.22(m-4) 4 2.05 1.56 3 6.73 1.22\,(m-4) \qquad f(m)=6.73+1.22(m-4) f(m) = 6.73 + 1.22(m-4) t(x) u(x) y = t(x) y = u(x) u(x) = -t(2x) u(x) = -t(-2x) u(x) = -t \left(\dfrac{x}{2} \right) u(x) = -t \left(-\dfrac{x}{2}\right) u(x) = -t(kx) k y = u(x) y = t(kx) x k y = t(x) x y = u(x) y = -t(x) 2 x y = -t(x) x k > 0 x \dfrac{1}{k} k = 2 y = -t \left( \dfrac{x}{2} \right) y = u(x) u(x) = -t \left(\dfrac{x}{2} \right) u(x) = -t \left(\dfrac{x}{2} \right) 73.5^\circ 1.8 \sin(73.5^\circ) \approx 0.96 \cos(73.5^\circ) \approx 0.28 \tan(73.5^\circ) \approx 3.38 0.51\,\text{m} 0.53\,\text{m} 1.27\,\text{m} 1.73\,\text{m} 73.5^\circ x 1.8\,\text{m} x 0.53\text{ m} 1990 2010 less times the number of years either before or after 1993 2005 1993 2007 1995 2005 1995 2003 \qquad 750 - 575 = 175 2000 \qquad 175 \div 35 = 5 5 2000 \qquad |x-2000| = 5 ~~~~ ABC AB BC DEF ABC p ABC \angle BAC \angle BCA t^\circ q^\circ ABC 180 t^\circ t^\circ q^\circ 180 p^\circ q^\circ \qquad p^\circ = 80^\circ \qquad (5-i)^2 i=\sqrt{-1} 24-10i 24+10i 26-10i 26+10i 5-i i^2=-1 \qquad24-10i \qquad y=mx+b m y b m m=\dfrac{y}{x+b} m = \dfrac{y + b}{x} m = \dfrac{y - b}{x} m = \dfrac{y}{x}-b mx \blue{\text{subtracting } b} m \pink{\text{dividing both sides of the equation by } x} \qquad m=\dfrac{y-b}{x} c c (a, b) 0 \dfrac{5}{17} \dfrac{5}{3} b c c = 0 0 c \dfrac{2}{5} a c 0 c b -\dfrac{14}{25} \ne \dfrac{14}{25} c = \dfrac53 \qquad w=6+\dfrac{3xy}{75} y w x y=\dfrac{25w}{x}-6 y=\dfrac{25w+150}{x} y=\dfrac{25w-150}{x} y=\dfrac{25w-2}{x} \green{\text{subtracting } 6 \text{ from both sides of the equation}} \dfrac{3xy}{75} \red{\text{multiply}} \red{\text{by }75} \red{75} y \blue{\text{dividing by }3x} \qquad y=\dfrac{25w-150}{x} \qquad x(x-a)-b(a+b)=0 a b x=-b x=(a-b) x=-b x=(a+b) x=a x=(a-b) x=a x=(a+b) x x S T S+T=-a ST=-(a+b)b S=-(a+b) T=b \qquad x=-b x=(a+b) {\qquad p=14.63\cdot0.8^a} (\text{psi}) a {0.8^a} 0.8\,\text{psi} 0.8\,\text{psi} 20\% 20\% a |0.8|<1 a {0.8^a} 0 0\,\text{psi} 0.8\,\text{psi} 0 0 a 0 14.63\,\text{psi} 0\,\text{psi} 1 a=0 a=1 0.8 80\% 20\% 20\% \qquad D = 10 \cdot 2.5^{-t} 10 D t D D 0 D 0 D 0 D 0 D \qquad D = \dfrac{10}{2.5^{t}} D 2.5 D D 0 10 2.5 D 0 2 4 . It costs for hot dogs and h d \qquad2h+4d=8 \qquad3h+2d = 7 h \qquad h=4-2d -1 0 1 2 0 \qquad {4^0 = 1} 0 0 1 1 \qquad {1^{-5} = 1} 2 150^{\circ} 15 \pi (\text{cm}) 0.3 \text{ cm} 2.6 \text{ cm} 5 \text{ cm} 18 \text{ cm} s \theta r s=r\theta \theta 150^{\circ} 2\pi 360^{\circ} \qquad 2\pi \text{ radians}=360^{\circ} 12 \dfrac {\pi}{6}=30^{\circ} 30^{\circ}=\dfrac {\pi}{6}\text{ radians} 150^{\circ}=\dfrac {5\pi}{6}\text{ radians} 18 \text{ cm} 2 3 4 446 x b x b \dfrac{x}3 + \dfrac{b}4 \leq 446 \dfrac{x}3 + \dfrac{b}4 \geq 446 3x + 4b \leq 446 3x + 4b \geq 446 a 3 \dfrac a3 \dfrac b4 446 x x a a (x \leq a) 446 a a (p, q) = (1, 1) 0 1 2 (1, 1) (1, 1) (1, 1) a (1, 1) (1, 1) a (1, 1) 1 2010 12{,}000 2011 5\% 2010 2012 7\% 2011 2 240 882 1440 1482 2011 5\% 2010 2011 2011 5\% 12{,}000 12{,}000 \qquad 0.05\times 12{,}000+12{,}000=12{,}600 12{,}000 105\% 12{,}000 \qquad 12{,}000\times (0.05+1) \qquad \text{or} \qquad12{,}000\times 1.05=12{,}600 2011 12{,}600 2012 7\% 2011 2012 2012 7\% 12{,}600 12{,}600 107\% 12{,}000 \qquad 0.07\times 12{,}600+12{,}600=13{,}482 \qquad \text{or} \qquad 12{,}6000\times 1.07=13{,}482 2012 13{,}482 2012 2010 1482 \qquad0=32-50x^2 x=\ \ \ \dfrac{4}{5} x=\pm\dfrac{4}{5} x=\ \ \ \dfrac{16}{25} x=\pm\dfrac{16}{25} 0=32-50x^2 2 2 0 \qquad 0=2(4-5x)(4+5x) \qquad4-5x=0 \qquad \text{or} \qquad 4+5x=0 x x=\dfrac{4}{5} x=-\dfrac{4}{5} x=\pm\dfrac{4}{5} \qquad W(x)=0.25x^2+0.2x V(x)=100x+40 W(x)\cdot V(x) 0.25x^2+99.8x+40 25x^3+30x^2+8x 0.25x^2+20x+40 25x^3+10x^2+20x+8 \qquad (0.25x^2+0.2x)(100x+40) 25x^3+30x^2+8x \qquad W(x)\cdot V(x)=25x^3+30x^2+8x (PV) , which of the following functions models the present value, , to be invested in a savings account earning interest compounded annually for PV(t)=10{,}000(1.05)^{\large{t}} PV(t)=10{,}000(1.05)^{\large{-t}} PV(t)=10{,}000(1+0.05t) PV(t)=10{,}000(1-0.05t) A(t) t \qquad A(t)=PV (1+0.05)^t PV ( A(t) PV after years, let's solve for is the present value of after years earning \qquad PV=\dfrac{10{,}000}{(1.05)^{\large{t}}}=10{,}000(1.05)^{\large{-t}} \qquad PV(t)=10{,}000(1.05)^{\large{-t}} \qquad Q(t)=2-0.3t+0.8t^2 R(t)=1.5t^2+0.7t-6.3 R(t)-Q(t) -0.7t^2-t+8.3 -0.5t^2+t-7.1 0.7t^2+0.4t-4.3 0.7t^2+t-8.3 \qquad(1.5t^2+0.7t-6.3)-(2-0.3t+0.8t^2) \qquad R(t)-Q(t)=0.7t^2+t-8.3 A(x)=4x-5 B(x)=3x-7 A(x)\cdot B(x) -31x+35 12x^2+35 7x^2-13x+35 12x^2-43x+35 A(x)\cdot B(x) 4x-5 A(x) 3x-7 B(x) 12x^2-43x+35 A(x)\cdot B(x)=12x^2-43x+35 2014 1986 1986 27.4 22.0 18.1 27.6 27.2 77.35 77{,}350 27.2 (\text{1986 dollars}) 1 1986 2.13 2014 1 2014 0.76 2014 S 2014\,\text{euros} 27.2 1980 45 \qquad\qquad 70\,\text{cm} \pi\approx 3.14 5{,}792\,\text{cm}^3 46{,}338\,\text{cm}^3 179{,}594\,\text{cm}^3 1{,}436{,}755\,\text{cm}^3 r 2\pi r 70 \qquad r=\dfrac{70}{2\pi}=\dfrac{35}{\pi} 5{,}792\,\text{cm}^3 14{,}697 per day in November of last year, as compared with per day in November two years ago. The estimates had a margin of error of at the and 95\% and 91\% 99\% 95\% and \quad 19 250 9{,}597 250 250 \qquad\qquad \qquad\quad \text{Cost for a } second advertisement during a major sporting event from to , where is years since and 30\text { sec} 1970 30\text { sec} 2010 1970 2010 30\text { sec} 1970 2010 30\text { sec} 10\% 30\text { sec} 1970 100{,}000 30\text { sec} 2010 and , the cost to run a Super Bowl advertisement increased by about A(t)=A_0\cdot (1+r)^t A_0 r A t 90 (10, 210) r r 9\% 30\text { sec} 9\% 1970 2010 30\text { sec} 10\% \qquad \dfrac{1}{3} - \dfrac{1}{2u^2} + \dfrac{2}{u^3} u<-5 \dfrac{2}{3u^3} \dfrac{-2}{6u^5} \dfrac{2u^3 + 9}{6u^3} \dfrac{2u^3 - 3u + 12}{6u^3} 6u^3 \blue{\dfrac {2u^3}{ 2u^3}} \pink{\dfrac {3u} {3u}} \purple{ \dfrac 6 6 } 1 \qquad \dfrac{2u^3 - 3u + 12}{6u^3} 1{,}500{,}000 (\text{kg}) 363\,\text{kg} 6\,\text{kg} 2 b c 1{,}500{,}000 b 363\,\text{kg} c 6\,\text{kg} 2 2 2 \qquad 4 4.5 5 5.5 30 15^\text{th} 16^\text{th} 15^\text{th} 4 16^\text{th} 5. \qquad \dfrac{4+5}{2} = 4.5 p t \qquad p = 50{,}000(2t-1)(t-5) t t 0 p = 0 t p 0 \qquad 2t - 1 = 0 \qquad t - 5 = 0 \qquad t = \dfrac{1}{2} \qquad \qquad t = 5 t = \dfrac{1}{2} \; t = 5 t = \dfrac{1}{2} EH 3 E H (\text{J}) 5 \text{ J} 3 H H (20, 155) H 155 155 \text{ J} (-a, -1) a (-3, -1) (1,3) (-3,-1) ( y -1 ) (-3,-1) y -1 -a=-3 a=3 \qquad a=3 \qquad (5+i^2)(2-2i) i=\sqrt{-1} 6-8i 8-8i 10-8i 12-8i i^2=-1 i^3=-i \qquad 8-8i 9.6 0.8 \pi = 3.14 9.6 \, \text{cm}^3 0.8 \, \text{cm} \qquad V = \pi r^2 h V h \qquad 9.6 \, \text{cm}^3= \pi r^2 (0.8 \, \text{cm}) \pi 0.8 \, \text{cm} r^2 r \qquad r = 2 y = f(x) y = g(x) 2 x g(x) = 9^x f(x) f(x) = 81^x f(x) = 2 \cdot 9^x f(x) = 9^{x+2} f(x) = 3^x y = g(x) x k > 0 x \dfrac{1}{k} k = 2 a^{bc} = (a^b)^c f(x) = 3^x 11:6 2.75 1.5 4.5 5 15 1 n \qquad \dfrac{11}{6}=\dfrac{2.75}{n} n \qquad n=1.5 1.5 3 4.5 3 \gray{\text{rational exponents}} x \blue{\text{quotient of a power}} \dfrac{x^a}{x^b}=x^{a-b} \pink{\text{negative exponent}} x^{-a}=\dfrac{1}{x^a} \gray{\text{radical}} 4^{3} 64^3 8^{18} 64^{24} \qquad \left(x^m\right)^n = x^{mn} \qquad \left(10-8i^3\right)-(6+i) i=\sqrt{-1} 4-7i 4+7i 4+9i 4-9i i i \sqrt{-1} i^2 -1 i^3 -\sqrt{-1}=-i i^4 i^2 \cdot i^2 = 1 -1 \qquad 4+7i (8r^4+4r^2+2r)-(8r^4+4r^2+1) \qquad\quad (8r^4+4r^2+2r)-(8r^4+4r^2+1) \qquad =(8r^4+4r^2+2r)+((-8)r^4+(-4)r^2+(-1)) \qquad =8r^4+4r^2+2r+(-8)r^4+(-4)r^2+(-1) \qquad =8r^4+(-8)r^4+4r^2+(-4)r^2+2r+(-1) \qquad =(8-8)r^4+(4-4)r^2+2r+(-1) \qquad =(0)r^4+(0)r^2+2r-1 \qquad =2r-1 x \angle and the measure of BAD=30^\circ \angle must be 180^\circ x \overline{CA} CAD \theta \qquad\qquad \cos\theta=\dfrac{\red{\text{Length of the side adjacent to }\theta}}{\blue{\text{Length of the triangle's hypotenuse}}} CAD \angle CAD=60^\circ \red{\overline{AD}} \red{\text{{adjacent}}} \angle{CAD} \red6 \blue{\overline{AC}} \blue{\text{{hypotenuse}}} CAD \blue{x} \qquad\qquad \cos60^\circ=\dfrac{\red{6}}{\blue{x}} \cos60^\circ \dfrac12 x 12 \qquad \sqrt{6r }=\sqrt{r^2-16} r 0 r=8 r=-2 r=\green8 r=8 r=\green{-2} \sqrt{-12} r=-2 r=8 8 8 5x+10y=30 xy x 3 y 6 \dfrac{1}{2} -\dfrac{2}{1} x 6 y 3 x y 5x+10y=30 x 0 y x x 5x+10y=30 (6,0) y 0 x y y 5x+10y=30 (0,3) x 6 y 3 \qquad \angle{EFG} \angle EFG \theta \theta \qquad\qquad \tan\theta=\dfrac{\red{\text{Length of the side opposite from }\theta}}{\blue{\text{Length of the side adjacent to }\theta}} EFG \angle EFG \red{\text{{opposite}}} \angle EFG \red {7\sqrt6} \blue{\text{{adjacent}}} \angle EFG \blue{7\sqrt6} \qquad\qquad \tan\theta=\dfrac{\red{7\sqrt6}}{\blue{7\sqrt6}}=1 0^\circ<\theta<90^\circ \tan45^\circ 1 \theta=45^\circ EFG 45^\circ 55 65 (\text{mph}) penalty is assessed for each 49 66 \,\text{mph} 49 71 \,\text{mph} 54 66 \,\text{mph} 54 71 \,\text{mph} 6\,\text{mph} \qquad \dfrac{1}{1-6i}-\dfrac{1}{1+6i} i=\sqrt{-1} \dfrac{12}{37}i -\dfrac{12}{37}i \dfrac{12}{37} -\dfrac{12}{37} \qquad(1-6i)(1+6i)=1-(6i)^2=1-36(-1)=37 \qquad \dfrac{1}{1-6i}-\dfrac{1}{1+6i}=\dfrac{12}{37}i \qquad \dfrac{1}{1-6i}-\dfrac{1}{1+6i}=\dfrac{12}{37}i \qquad F = G \dfrac{Mm}{r^2} F M m r G m M m = G \dfrac{FM}{r^2} m = \dfrac{FGr^2 } {M} m = \dfrac{Fr^2 } {GM} m = \dfrac{F} {GMr^2 } m \pink{\text{multiplying both sides by } r^2} \blue{\text{divide both sides by } GM} \dfrac{r^2}{GM} \qquad m = \dfrac{Fr^2 } {GM} (3,0) (-2,0) (2,0) (0,-6) (4,6) (0,-6) (-6,0) (6,4) (4,6) (0,-6) (4,6) (0,-6) 58 (\text{mg}) C \text{ mg} t t C C=58-5t C=58-9t C=58(0.84)^t C=58(1.18)^t y=a\cdot b^x a y (C ) b>0 a>0 00 b>1 C=58-5t C=58-9t C=58(1.18)^t a>0 b>0 C=58(0.84)^t 58 (13, 6) b^{13}=0.84 b 13^{\text{th}} \dfrac{1}{13} C=58(0.84)^t C=58(0.84)^t C t 10 500 40\% 5 15 10 500 40\% 5 60\% 0.6 5 15 3 \qquad 500\,\text{words}\cdot(0.6)(0.6)(0.6)=500\cdot0.6^3=108\,\text{words} \qquad 650-108=542 542 15 1 1 0 150 1{,}000 1 \qquad \dfrac {2}{2-i} -\dfrac{2}{2+i} i=\sqrt{-1} \dfrac {4i}{5} \dfrac {-4i}{5} \dfrac {2i}{3} \dfrac {-2i}{3} \qquad \dfrac{4i}{5} 500 DE E (\text{m}) D (\text{km}) \text{m/km} D = 0 E = 0 (0, 0) (6.5, 130) 20 \text{ m/km} s = (t+3)^2(t+2)(t+1)(t)(t-1) st t t t t -3 -2 -1 0 1 t 0 \qquad \dfrac{\left( \dfrac{10x^2}{7y^3} \right) }{\left( \dfrac{5x}{2y^6} \right)} x>1 y>2 \dfrac{50x^4}{14y^9} \dfrac{7}{4xy^3} \dfrac{4xy^3}{7} \dfrac{4x^2y^2}{7} 1 1 \dfrac x x 1 1x 1 \qquad \dfrac{4xy^3}{7} x^2+y^2=4 x^2+y^2=r^2 (0,0) r x^2+y^2=4 (0,0) 2 \left(x^2+y^2=2^2\right) \qquad y=x^2-1 y=a(x-h)^2+k (h,k) y=x^2-1 (0,-1) a>0 \left((1,0), (2, 3), (-1,0)\right) 45 5 2 x 2 45x + 5\leq120 45x + 5\geq120 45 + 5(x-1)\leq120 45 + 5x\leq120 2 120 \qquad \text{original time} + \text{additional time per week} \leq120 \space \text{minutes} x 5x x-1 \qquad 45 + 5(x-1)\leq120 \qquad 45 + 5(x-1)\leq20 \qquad(x+20)^2+(y-30)^2=225 xy y (20,-30) (-20,30) (400,-900) (-400,900) (\green h,\purple k) \red r \qquad(x-\green h)^2+(y-\purple k)^2=\red r^2 \qquad(x-\green{20})^2+(y-\purple{30})^2=\red{15}^2 y \purple{30} \qquad \left(\dfrac{1}{2}\right)^{-2}+3^0 -\dfrac{1}{4} \dfrac{3}{4} 4 5 x\neq0 x^{-n}=\dfrac{1}{x^n} -n^{\text{th}} n^{\text{th}} \left(\dfrac{1}{2}\right)^{-2} \left(\dfrac{1}{2}\right)^{2} \left(\dfrac{1}{2}\right)^{2}=\dfrac{1}{4} \left(\dfrac{1}{2}\right)^{-2}=4 x^0=1 x\neq0 x\neq0 x^0=1 5 \qquad\dfrac{5m}{m^2-24mn+144n^2}+\dfrac{2n}{m^2-144n^2} \dfrac{5m^2+60mn+2n^2}{(m-12n)(m+12n)} \dfrac{5m^2+62mn-24n^2}{(m-12n)^2(m+12n)} \dfrac{5m-24mn+2n}{(m-12n)(m-12n)} \dfrac{5m^2-58mn+24n^2}{(m-12n)(m+12n)^2} \qquad\dfrac{5m}{(m-12n)^2}+\dfrac{2n}{(m+12n)(m-12n)} \qquad (m-12n)^2(m+12n) \dfrac{(m+12n)}{(m+12n)} \dfrac{(m-12n)}{(m-12n)} \qquad\dfrac{5m(m+12n)}{(m-12n)^2(m+12n)}+\dfrac{2n(m-12n)}{(m-12n)^2(m+12n)} \qquad\dfrac{5m^2+62mn-24n^2}{(m-12n)^2(m+12n)} \text{{Time in minutes}} \text{{Number of runners}} 18 1 19 2 20 3 21 6 22 r 23 1 24 2 3 21 r 1 2 3 6 21 \qquad 21=\dfrac{18\cdot1+19\cdot2+20\cdot3+21\cdot6+22\cdot r +23\cdot1+24\cdot2}{15+r} 2 22 180^{\circ} 195^{\circ} 210^{\circ} 225^{\circ} 2\pi 360^{\circ} \qquad 2\pi \text{ radians}=360^{\circ} 2\pi 1\text{ radian}=\dfrac{180}{\pi}^{\circ} 2\pi \text{ radians}=360^{\circ} 24 \dfrac{\pi}{12} \text{ radians}=15^{\circ} \dfrac{13\pi}{12} 13\cdot \dfrac{\pi}{12} \dfrac{13\pi}{12}\text{ radians} 13\cdot 15^{\circ} 195^{\circ} \qquad\dfrac{13\pi}{12}=195^{\circ} \left(3v+2\right)-\left(\dfrac{2}{3}v-\dfrac{1}{4}\right) \dfrac{7}{3}v+\dfrac{7}{4} \dfrac{7}{3}v+\dfrac{9}{4} 2v^2+\dfrac{1}{2} 2v^2+\dfrac{7}{12}x-\dfrac{1}{2} \qquad \left(3v+2\right)-\left(\dfrac{2}{3}v-\dfrac{1}{4}\right)=3v+2-\dfrac{2}{3}v+\dfrac{1}{4} \qquad \dfrac{7}{3}v+\dfrac{9}{4} y=2x^2-5x-3 x y=a(x-h)^2+k (h,k) y=2x^2-5x-3 y=2x^2-5x-3 x^2 1 2 \cdot \dfrac{25}{16}\; \dfrac{25}{8}\; \dfrac{25}{8}\; y=2\left(x-\dfrac{5}{4}\right)^2-\dfrac{49}{8} \left(\dfrac{5}{4},-\dfrac{49}{8}\right) x y=ax^2+bx+c x=-\dfrac{b}{2a} y=2x^2-5x-3 x \dfrac{5}{4} 2002 per pound and the price of tuna fish was per pound. For the following months, the price of ground beef increased at the rate of per month and the price of tuna fish decreased at per month. In approximately how many months after the beginning of January 7.5 7.5 10 10 x 2002 per pound and increased each month. The price per pound and decreased each month. The price 10 2002 10 \qquad 1.70 + 0.03x \qquad 1.70 + 0.03\cdot 10 \qquad 1.70 + 0.30 \qquad 2.00 10 3 . If the cost of the hat costs 3x<94 3x>94 4x<94 4x>94 \qquad \text{cost of coat} + \text{cost of hat} <94 3 , then the coat costs \qquad 4x<94 2014 1\text{,}000 560 56\% 56\% 56\% 56\% 1\text{,}000 56\% 56\% 56\% 56\% 56\% \qquad\qquad\qquad\qquad \text{Original data} \qquad \text{Data without the lowest and highest heights } y=8\left(\dfrac{3}{4}\right)^x y=\dfrac{1}{8}\cdot\left(\dfrac{7}{4}\right)^x xy y=8\left(\dfrac{3}{4}\right)^x y=\dfrac{1}{8}\cdot\left(\dfrac{7}{4}\right)^x y=8\left(\dfrac{3}{4}\right)^x y=\dfrac{1}{8}\cdot\left(\dfrac{7}{4}\right)^x y=ab^x a b 0< b<1 b>1 a y 0< \dfrac{3}{4}<1 y=8\left(\dfrac{3}{4}\right)^x \dfrac{7}{4}>1 y=\dfrac{1}{8}\cdot\left(\dfrac{7}{4}\right)^x y=8\left(\dfrac{3}{4}\right)^x y=\dfrac{1}{8}\cdot\left(\dfrac{7}{4}\right)^x c<0 \qquad\dfrac{3c^2-300}{5c^2-52c+20} \dfrac{c+10}{5c-2} \dfrac{3c+30}{5c-2} \dfrac{c-20}{5c+4} \dfrac{3c-60}{5c+4} 3 \qquad3c^2-300=3(c^2-100)=3(c+10)(c-10) \qquad5c^2-52c+20=(5c-2)(c-10) c 0 c<0 \qquad \dfrac{3c+30}{5c-2} 6 56 . Brand B has rolls, each with sheets, for 6 56 6\cdot 46=336 8 48 8\cdot 48=384 439 25\% 110 351 549 1756 25\% 0.25 439 x \qquad 0.25x = 439 0.25 x = 1756 1756 \qquad45, 45, 56, 56, 73, 73, 73 56 \qquad \dfrac{45+45+56+56+73+73+73}{7} = 60.143\approx 60.14 \qquad 60.14 - 56 = 4.14 tP P (\text{nW}) t t t P 0 P 0 \text{ nW} \left(1-p\right) \left(\dfrac{1}{2}-p\right) p \left(1-p\right) \left(\dfrac{1}{2}-p\right) p \left(1-p\right) \cdot \left(\dfrac{1}{2}-p\right) p \quad\qquad \left(1-p\right) \cdot \left(\dfrac{1}{2}-p\right)-p \dfrac12 \dfrac12 \qquad =\dfrac12\left[ \left(1-p\right) \cdot \left(1-2p\right)-2p\right] \dfrac12 \qquad =\dfrac12\left[ (1-p-2p+2p^2)-2p\right] \qquad =\dfrac12\left[ 1-p-2p+2p^2-2p\right] \qquad =\dfrac12\left[ 1\blue{-p}\blue{-2p}+2p^2\blue{-2p}\right] \qquad =\dfrac12\left( 1\blue{-5p}+2p^2\right) \qquad n=\left(\dfrac{1.96\sigma}{E}\right)^2 n \sigma E \sigma=\sqrt{\dfrac{En}{1.96}} \sigma=\dfrac{E\sqrt{n}}{1.96} \sigma=\sqrt{\dfrac{1.96n}{E}} \sigma=\dfrac{1.96\sqrt{n}}{E} \red{\text{multiply by }E} \blue{\text{divide by }1.96} \qquad\sigma=\dfrac{E\sqrt{n}}{1.96} \qquad w = 500 - 6.2t w t 6.2t 6.2t 6.2t 6.2t t 6.2t t 500 6.2t w 6.2t 6.2t 500 6.2t t \qquad\dfrac{3k}{k+4}-\dfrac{4k}{k-2}=-5 k -2 5 -2 4 -2 5 \qquad(k+4)(k-2) \qquad\dfrac{3k\pink{(k-2)}}{(k+4)\pink{(k-2)}}-\dfrac{4k\blue{(k+4)}}{\blue{(k+4)}(k-2)}=\dfrac{-5\pink{(k-2)}\blue{(k+4)}}{\pink{(k-2)}\blue{(k+4)}} \qquad\dfrac{3k^2 - 6k}{(k+4)(k-2)}-\dfrac{4k^2+16k}{(k+4)(k-2)}=\dfrac{-5(k^2 + 2k - 8)}{(k-2)(k+4)} k \qquad 4(k - 5)(k + 2) = 0 k = 5 k = -2 k = 5 k =5 k = -2 k =-2 k = 5 k= -2 f(x)=\dfrac{2}{3x-1} g(x)=\dfrac{x+4}{x} (g\circ f)(x) x\neq\dfrac{1}{3} 6x-1 6x-2 \dfrac{x}{x+6} \dfrac{2x+8}{3x^2-x} (g\circ f)(x)=g(f(x)) g(f(x)) f(x) g \qquad g(f(x))=\dfrac{(f(x))+4}{(f(x))} f(x)=\dfrac{2}{3x-1} \qquad g(f(x))=\dfrac{\dfrac{2}{3x-1}+4}{\dfrac{2}{3x-1}} 3x-1 \qquad g(f(x))=\dfrac{\dfrac{2}{3x-1}+4}{\dfrac{2}{3x-1}}\cdot \dfrac{\dfrac{3x-1}{1}}{\dfrac{3x-1}{1}} 1 (g\circ f)(x) x f f(x) g f x\neq\dfrac{1}{3} f(x) g f(x) g f(x)\neq0 \dfrac{2}{3x-1}\neq0 (g\circ f)(x)=6x-1 x\neq\dfrac{1}{3} y=\dfrac{2}{5}x+2 y=\dfrac{2}{5}x-2 y=-\dfrac{2}{5}x+2 y=-\dfrac{2}{5}x-2 y y=mx+b y (0,-2) y -2 \dfrac{y_2-y_1}{x_2-x_1} (0,-2) (5,-4) \qquad \dfrac{-4-(-2)}{5-0}=-\dfrac{2}{5} y=mx+b m b y \qquad y=-\dfrac{2}{5}x-2 y=-\dfrac{2}{5}x-2 \qquad\qquad\qquad 20 4 \pi\approx 3.14 452 904 1{,}072 8{,}574 20 10 4 \qquad r=10-4=6 \qquad\qquad 6 452 \qquad\dfrac{2.5+3.0}{2}=2.75 2.75 2.9\overline{6} 0.2